亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Global leaf‐trait mapping based on optimality theory

特质 比叶面积 生态学 植物功能类型 生态系统 生物 气候变化 光合作用 计算机科学 植物 程序设计语言
作者
Ning Dong,Benjamin Dechant,Han Wang,Ian J. Wright,Iain Colin Prentice
出处
期刊:Global Ecology and Biogeography [Wiley]
卷期号:32 (7): 1152-1162 被引量:2
标识
DOI:10.1111/geb.13680
摘要

Abstract Aim Leaf traits are central to plant function, and key variables in ecosystem models. However recently published global trait maps, made by applying statistical or machine‐learning techniques to large compilations of trait and environmental data, differ substantially from one another. This paper aims to demonstrate the potential of an alternative approach, based on eco‐evolutionary optimality theory, to yield predictions of spatio‐temporal patterns in leaf traits that can be independently evaluated. Innovation Global patterns of community‐mean specific leaf area (SLA) and photosynthetic capacity ( V cmax ) are predicted from climate via existing optimality models. Then leaf nitrogen per unit area ( N area ) and mass ( N mass ) are inferred using their (previously derived) empirical relationships to SLA and V cmax . Trait data are thus reserved for testing model predictions across sites. Temporal trends can also be predicted, as consequences of environmental change, and compared to those inferred from leaf‐level measurements and/or remote‐sensing methods, which are an increasingly important source of information on spatio‐temporal variation in plant traits. Main conclusions Model predictions evaluated against site‐mean trait data from > 2,000 sites in the Plant Trait database yielded R 2 = 73% for SLA, 38% for N mass and 28% for N area . Declining species‐level N mass , and increasing community‐level SLA, have both been recently reported and were both correctly predicted. Leaf‐trait mapping via optimality theory holds promise for macroecological applications, including an improved understanding of community leaf‐trait responses to environmental change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助科研通管家采纳,获得10
1秒前
HaCat应助科研通管家采纳,获得10
1秒前
搜集达人应助可爱丹彤采纳,获得10
4秒前
8秒前
万能图书馆应助可爱丹彤采纳,获得10
21秒前
柚又完成签到 ,获得积分10
38秒前
韩雨桐完成签到 ,获得积分10
44秒前
45秒前
46秒前
Gabriel发布了新的文献求助10
50秒前
852应助可爱丹彤采纳,获得10
52秒前
52秒前
57秒前
深情安青应助可爱丹彤采纳,获得10
1分钟前
1分钟前
领导范儿应助Gabriel采纳,获得10
1分钟前
xiaoxiao发布了新的文献求助10
1分钟前
华仔应助可爱丹彤采纳,获得10
1分钟前
沐沐完成签到,获得积分20
1分钟前
HaCat应助科研通管家采纳,获得10
2分钟前
HaCat应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Tales完成签到 ,获得积分10
2分钟前
沉静的碧琴完成签到 ,获得积分10
2分钟前
caca完成签到,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
QQ发布了新的文献求助10
2分钟前
暗号完成签到 ,获得积分0
2分钟前
w123发布了新的文献求助10
2分钟前
天选小牛马完成签到 ,获得积分10
2分钟前
w123完成签到,获得积分10
2分钟前
zwb完成签到 ,获得积分10
2分钟前
SciGPT应助可爱丹彤采纳,获得10
2分钟前
Doctor.TANG完成签到 ,获得积分10
2分钟前
祁言完成签到 ,获得积分10
2分钟前
2分钟前
zqq完成签到,获得积分0
3分钟前
QQ完成签到,获得积分20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302244
求助须知:如何正确求助?哪些是违规求助? 4449478
关于积分的说明 13848401
捐赠科研通 4335641
什么是DOI,文献DOI怎么找? 2380481
邀请新用户注册赠送积分活动 1375461
关于科研通互助平台的介绍 1341639