Global leaf‐trait mapping based on optimality theory

特质 比叶面积 生态学 植物功能类型 生态系统 生物 气候变化 光合作用 计算机科学 植物 程序设计语言
作者
Ning Dong,Benjamin Dechant,Han Wang,Ian J. Wright,Iain Colin Prentice
出处
期刊:Global Ecology and Biogeography [Wiley]
卷期号:32 (7): 1152-1162 被引量:2
标识
DOI:10.1111/geb.13680
摘要

Abstract Aim Leaf traits are central to plant function, and key variables in ecosystem models. However recently published global trait maps, made by applying statistical or machine‐learning techniques to large compilations of trait and environmental data, differ substantially from one another. This paper aims to demonstrate the potential of an alternative approach, based on eco‐evolutionary optimality theory, to yield predictions of spatio‐temporal patterns in leaf traits that can be independently evaluated. Innovation Global patterns of community‐mean specific leaf area (SLA) and photosynthetic capacity ( V cmax ) are predicted from climate via existing optimality models. Then leaf nitrogen per unit area ( N area ) and mass ( N mass ) are inferred using their (previously derived) empirical relationships to SLA and V cmax . Trait data are thus reserved for testing model predictions across sites. Temporal trends can also be predicted, as consequences of environmental change, and compared to those inferred from leaf‐level measurements and/or remote‐sensing methods, which are an increasingly important source of information on spatio‐temporal variation in plant traits. Main conclusions Model predictions evaluated against site‐mean trait data from > 2,000 sites in the Plant Trait database yielded R 2 = 73% for SLA, 38% for N mass and 28% for N area . Declining species‐level N mass , and increasing community‐level SLA, have both been recently reported and were both correctly predicted. Leaf‐trait mapping via optimality theory holds promise for macroecological applications, including an improved understanding of community leaf‐trait responses to environmental change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭日晓发布了新的文献求助10
刚刚
爆辣跳跳糖关注了科研通微信公众号
刚刚
大笨蛋发布了新的文献求助10
刚刚
world完成签到,获得积分10
刚刚
英姑应助孤独丹珍采纳,获得10
1秒前
daisies应助zxq采纳,获得20
1秒前
1秒前
怪胎完成签到,获得积分10
1秒前
领导范儿应助风中谷南采纳,获得10
1秒前
小熵完成签到,获得积分10
2秒前
2秒前
jiaminzhao发布了新的文献求助10
3秒前
3秒前
传奇3应助lixxx采纳,获得10
4秒前
鸣笛应助左丘以云采纳,获得20
5秒前
5秒前
完美春天发布了新的文献求助10
6秒前
6秒前
小花妹妹发布了新的文献求助10
6秒前
sanages发布了新的文献求助10
7秒前
7秒前
My完成签到,获得积分10
8秒前
郦稀完成签到,获得积分10
8秒前
鸭梨发布了新的文献求助10
8秒前
其11发布了新的文献求助10
9秒前
在捂汗发布了新的文献求助10
10秒前
大笨蛋完成签到,获得积分20
10秒前
10秒前
10秒前
11秒前
11秒前
青蛙十字绣00700完成签到,获得积分10
11秒前
Jasper应助执着过客采纳,获得10
12秒前
sanages完成签到,获得积分10
12秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
帅气抽屉完成签到,获得积分10
13秒前
14秒前
now发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577232
求助须知:如何正确求助?哪些是违规求助? 3996368
关于积分的说明 12372376
捐赠科研通 3670475
什么是DOI,文献DOI怎么找? 2022811
邀请新用户注册赠送积分活动 1056944
科研通“疑难数据库(出版商)”最低求助积分说明 944026