Global leaf‐trait mapping based on optimality theory

特质 比叶面积 生态学 植物功能类型 生态系统 生物 气候变化 光合作用 计算机科学 植物 程序设计语言
作者
Ning Dong,Benjamin Dechant,Han Wang,Ian J. Wright,Iain Colin Prentice
出处
期刊:Global Ecology and Biogeography [Wiley]
卷期号:32 (7): 1152-1162 被引量:2
标识
DOI:10.1111/geb.13680
摘要

Abstract Aim Leaf traits are central to plant function, and key variables in ecosystem models. However recently published global trait maps, made by applying statistical or machine‐learning techniques to large compilations of trait and environmental data, differ substantially from one another. This paper aims to demonstrate the potential of an alternative approach, based on eco‐evolutionary optimality theory, to yield predictions of spatio‐temporal patterns in leaf traits that can be independently evaluated. Innovation Global patterns of community‐mean specific leaf area (SLA) and photosynthetic capacity ( V cmax ) are predicted from climate via existing optimality models. Then leaf nitrogen per unit area ( N area ) and mass ( N mass ) are inferred using their (previously derived) empirical relationships to SLA and V cmax . Trait data are thus reserved for testing model predictions across sites. Temporal trends can also be predicted, as consequences of environmental change, and compared to those inferred from leaf‐level measurements and/or remote‐sensing methods, which are an increasingly important source of information on spatio‐temporal variation in plant traits. Main conclusions Model predictions evaluated against site‐mean trait data from > 2,000 sites in the Plant Trait database yielded R 2 = 73% for SLA, 38% for N mass and 28% for N area . Declining species‐level N mass , and increasing community‐level SLA, have both been recently reported and were both correctly predicted. Leaf‐trait mapping via optimality theory holds promise for macroecological applications, including an improved understanding of community leaf‐trait responses to environmental change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丘比特应助hata采纳,获得10
刚刚
顾矜应助lszhw采纳,获得10
1秒前
lqq完成签到 ,获得积分10
1秒前
1秒前
共享精神应助拟拟采纳,获得10
1秒前
1秒前
lhy12345完成签到,获得积分10
1秒前
非常可爱发布了新的文献求助20
2秒前
2秒前
2秒前
2秒前
科研民工发布了新的文献求助10
3秒前
文艺的初蓝完成签到 ,获得积分10
3秒前
TiAmo发布了新的文献求助10
3秒前
刘十三完成签到,获得积分10
3秒前
3秒前
犹豫忆南完成签到,获得积分10
4秒前
科研通AI5应助kingwhitewing采纳,获得10
5秒前
5秒前
mm关注了科研通微信公众号
5秒前
xieyuanxing发布了新的文献求助10
5秒前
5秒前
左然然完成签到,获得积分10
5秒前
5秒前
人福药业完成签到,获得积分10
6秒前
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
细腻晓露发布了新的文献求助10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
6秒前
三里墩头应助科研通管家采纳,获得10
6秒前
天线宝宝应助科研通管家采纳,获得10
6秒前
wing00024完成签到,获得积分10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
6秒前
小马甲应助科研通管家采纳,获得10
7秒前
控制小弟应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740