Global leaf‐trait mapping based on optimality theory

特质 比叶面积 生态学 植物功能类型 生态系统 生物 气候变化 光合作用 计算机科学 植物 程序设计语言
作者
Ning Dong,Benjamin Dechant,Han Wang,Ian J. Wright,Iain Colin Prentice
出处
期刊:Global Ecology and Biogeography [Wiley]
卷期号:32 (7): 1152-1162 被引量:2
标识
DOI:10.1111/geb.13680
摘要

Abstract Aim Leaf traits are central to plant function, and key variables in ecosystem models. However recently published global trait maps, made by applying statistical or machine‐learning techniques to large compilations of trait and environmental data, differ substantially from one another. This paper aims to demonstrate the potential of an alternative approach, based on eco‐evolutionary optimality theory, to yield predictions of spatio‐temporal patterns in leaf traits that can be independently evaluated. Innovation Global patterns of community‐mean specific leaf area (SLA) and photosynthetic capacity ( V cmax ) are predicted from climate via existing optimality models. Then leaf nitrogen per unit area ( N area ) and mass ( N mass ) are inferred using their (previously derived) empirical relationships to SLA and V cmax . Trait data are thus reserved for testing model predictions across sites. Temporal trends can also be predicted, as consequences of environmental change, and compared to those inferred from leaf‐level measurements and/or remote‐sensing methods, which are an increasingly important source of information on spatio‐temporal variation in plant traits. Main conclusions Model predictions evaluated against site‐mean trait data from > 2,000 sites in the Plant Trait database yielded R 2 = 73% for SLA, 38% for N mass and 28% for N area . Declining species‐level N mass , and increasing community‐level SLA, have both been recently reported and were both correctly predicted. Leaf‐trait mapping via optimality theory holds promise for macroecological applications, including an improved understanding of community leaf‐trait responses to environmental change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默的迎夏完成签到 ,获得积分20
1秒前
linshiba_18完成签到,获得积分10
1秒前
1秒前
1秒前
柔情公蚂蚁完成签到,获得积分20
2秒前
jhonnyhuang发布了新的文献求助10
2秒前
吴少华完成签到,获得积分20
4秒前
奋斗的大曼完成签到 ,获得积分10
4秒前
4秒前
默默的迎夏关注了科研通微信公众号
5秒前
乐观沛白完成签到,获得积分10
6秒前
ZM发布了新的文献求助20
7秒前
8秒前
斯文败类应助过儿采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
喜喜完成签到,获得积分10
9秒前
9秒前
DENG发布了新的文献求助10
9秒前
在水一方应助wenxianxiazai123采纳,获得10
10秒前
咩咩完成签到 ,获得积分10
10秒前
Macong_44713发布了新的文献求助10
11秒前
gaintpeople完成签到,获得积分10
11秒前
不安平卉完成签到,获得积分20
11秒前
荔枝完成签到,获得积分10
12秒前
科目三应助闪闪冰绿采纳,获得10
12秒前
13秒前
liya发布了新的文献求助10
13秒前
英俊的铭应助小胡采纳,获得10
13秒前
科研通AI6应助坦率灵槐采纳,获得10
13秒前
14秒前
刘爽发布了新的文献求助10
16秒前
乐乐应助天思采纳,获得10
16秒前
大意的念芹完成签到,获得积分10
16秒前
SciGPT应助YZZ采纳,获得30
16秒前
童话北极村完成签到,获得积分10
16秒前
16秒前
大个应助崔宏玺采纳,获得10
17秒前
不错吧完成签到,获得积分10
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468653
求助须知:如何正确求助?哪些是违规求助? 4571995
关于积分的说明 14333271
捐赠科研通 4498777
什么是DOI,文献DOI怎么找? 2464700
邀请新用户注册赠送积分活动 1453311
关于科研通互助平台的介绍 1427921