已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sentiment, we-talk and engagement on social media: insights from Twitter data mining on the US presidential elections 2020

心理学 社会化媒体 情绪分析 认知 社会心理学 样品(材料) 负偏倚 认知心理学 计算机科学 化学 色谱法 神经科学 机器学习 万维网
作者
Linus Hagemann,Olga Abramova
出处
期刊:Internet Research [Emerald (MCB UP)]
卷期号:33 (6): 2058-2085 被引量:18
标识
DOI:10.1108/intr-12-2021-0885
摘要

Purpose Given inconsistent results in prior studies, this paper applies the dual process theory to investigate what social media messages yield audience engagement during a political event. It tests how affective cues (emotional valence, intensity and collective self-representation) and cognitive cues (insight, causation, certainty and discrepancy) contribute to public engagement. Design/methodology/approach The authors created a dataset of more than three million tweets during the 2020 United States (US) presidential elections. Affective and cognitive cues were assessed via sentiment analysis. The hypotheses were tested in negative binomial regressions. The authors also scrutinized a subsample of far-famed Twitter users. The final dataset, scraping code, preprocessing and analysis are available in an open repository. Findings The authors found the prominence of both affective and cognitive cues. For the overall sample, negativity bias was registered, and the tweet’s emotionality was negatively related to engagement. In contrast, in the sub-sample of tweets from famous users, emotionally charged content produced higher engagement. The role of sentiment decreases when the number of followers grows and ultimately becomes insignificant for Twitter participants with many followers. Collective self-representation (“we-talk”) is consistently associated with more likes, comments and retweets in the overall sample and subsamples. Originality/value The authors expand the dominating one-sided perspective to social media message processing focused on the peripheral route and hence affective cues. Leaning on the dual process theory, the authors shed light on the effectiveness of both affective (peripheral route) and cognitive (central route) cues on information appeal and dissemination on Twitter during a political event. The popularity of the tweet’s author moderates these relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助Anna采纳,获得10
刚刚
长江完成签到 ,获得积分10
刚刚
所所应助YUN采纳,获得10
1秒前
李健的小迷弟应助XU采纳,获得10
1秒前
无花果应助Literaturecome采纳,获得10
1秒前
TY发布了新的文献求助10
1秒前
2秒前
Owen应助ShellyHan采纳,获得10
3秒前
顾冷发布了新的文献求助30
3秒前
ximei发布了新的文献求助10
4秒前
包容的剑发布了新的文献求助10
4秒前
4秒前
6秒前
7秒前
危机的一斩完成签到,获得积分10
7秒前
8秒前
科研通AI5应助nini采纳,获得10
8秒前
8秒前
南湖秋水发布了新的文献求助10
8秒前
窦嘉懿完成签到 ,获得积分10
9秒前
10秒前
10秒前
经年完成签到,获得积分20
10秒前
10秒前
科研通AI5应助Try_1采纳,获得10
11秒前
CSS发布了新的文献求助10
11秒前
hajy发布了新的文献求助10
12秒前
雨肖发布了新的文献求助10
12秒前
12秒前
更深的蓝发布了新的文献求助20
12秒前
12秒前
高天雨发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
Lucas应助孤独的半芹采纳,获得10
14秒前
兴奋半雪发布了新的文献求助10
15秒前
清爽水彤完成签到 ,获得积分10
15秒前
受伤南霜完成签到,获得积分10
16秒前
dddd完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555408
求助须知:如何正确求助?哪些是违规求助? 3131038
关于积分的说明 9389777
捐赠科研通 2830505
什么是DOI,文献DOI怎么找? 1556071
邀请新用户注册赠送积分活动 726445
科研通“疑难数据库(出版商)”最低求助积分说明 715750