亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep learning based dual encoder–decoder framework for anatomical structure segmentation in chest X-ray images

分割 计算机科学 编码器 人工智能 深度学习 卷积神经网络 模式识别(心理学) 图像分割 计算机视觉 操作系统
作者
Ihsan Ullah,Farman Ali,Babar Shah,Shaker El–Sappagh,Tamer Abuhmed,Sang Hyun Park
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:36
标识
DOI:10.1038/s41598-023-27815-w
摘要

Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system for the anatomical structure segmentation remains challenging due to several indistinct structures, variations in the anatomical structure shape among different individuals, the presence of medical tools, such as pacemakers and catheters, and various artifacts in the chest radiographic images. In this paper, we propose a robust deep learning segmentation framework for the anatomical structure in chest radiographs that utilizes a dual encoder-decoder convolutional neural network (CNN). The first network in the dual encoder-decoder structure effectively utilizes a pre-trained VGG19 as an encoder for the segmentation task. The pre-trained encoder output is fed into the squeeze-and-excitation (SE) to boost the network's representation power, which enables it to perform dynamic channel-wise feature calibrations. The calibrated features are efficiently passed into the first decoder to generate the mask. We integrated the generated mask with the input image and passed it through a second encoder-decoder network with the recurrent residual blocks and an attention the gate module to capture the additional contextual features and improve the segmentation of the smaller regions. Three public chest X-ray datasets are used to evaluate the proposed method for multi-organs segmentation, such as the heart, lungs, and clavicles, and single-organ segmentation, which include only lungs. The results from the experiment show that our proposed technique outperformed the existing multi-class and single-class segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
21秒前
暖雪儿发布了新的文献求助10
24秒前
二十八画生完成签到 ,获得积分10
26秒前
77完成签到 ,获得积分10
34秒前
科研通AI2S应助暖雪儿采纳,获得10
34秒前
54秒前
丝垚完成签到 ,获得积分10
56秒前
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
心随以动完成签到 ,获得积分10
1分钟前
Gigi发布了新的文献求助10
1分钟前
1分钟前
1分钟前
冷艳的立果应助Gigi采纳,获得10
1分钟前
修辛完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
圆滚滚的栗子君完成签到 ,获得积分10
2分钟前
bkagyin应助ling采纳,获得10
2分钟前
善良的冷梅完成签到,获得积分10
2分钟前
2分钟前
马騳骉完成签到,获得积分10
2分钟前
2分钟前
3分钟前
zhaozi发布了新的文献求助10
3分钟前
zhaozi完成签到,获得积分10
3分钟前
雾蓝完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491339
求助须知:如何正确求助?哪些是违规求助? 3077921
关于积分的说明 9151234
捐赠科研通 2770492
什么是DOI,文献DOI怎么找? 1520508
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702298