Critical node identification in network cascading failure based on load percolation

级联故障 相互依存的网络 计算机科学 节点(物理) 渗透(认知心理学) 复杂网络 渗流理论 脆弱性(计算) 鉴定(生物学) 网络拓扑 关键基础设施 分布式计算 计算机网络 网络管理 拓扑(电路) 工程类 电力系统 计算机安全 功率(物理) 电气工程 神经科学 万维网 物理 生物 结构工程 量子力学 植物
作者
Hangyu Hu,Fan Wu,Xie Xiaowei,Qiang Wei,Xuemeng Zhai,Guangmin Hu
出处
期刊:Electronic research archive [American Institute of Mathematical Sciences]
卷期号:31 (3): 1524-1542 被引量:4
标识
DOI:10.3934/era.2023077
摘要

<abstract> <p>Identification of network vulnerability is one of the important means of cyberspace operation, management and security. As a typical case of network vulnerability, network cascading failures are often found in infrastructure networks such as the power grid system, communication network and road traffic, where the failure of a few nodes may cause devastating disasters to the whole complex system. Therefore, it is very important to identify the critical nodes in the network cascading failure and understand the internal laws of cascading failure in complex systems so as to fully grasp the vulnerability of complex systems and develop a network management strategy. The existing models for cascading failure analysis mainly evaluate the criticality of nodes by quantifying their importance in the network structure. However, they ignore the important load, node capacity and other attributes in the cascading failure model. In order to address those limitations, this paper proposes a novel critical node identification method in the load network from the perspective of a network adversarial attack. On the basis of obtaining a relatively complete topology, first, the network attack can be modeled as a cascading failure problem for the load network. Then, the concept of load percolation is proposed according to the percolation theory, which is used to construct the load percolation model in the cascading failure problem. After that, the identification method of critical nodes is developed based on the load percolation, which accurately identifies the vulnerable nodes. The experimental results show that the load percolation parameter can discover the affected nodes more accurately, and the final effect is better than those of the existing methods.</p> </abstract>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OuO完成签到,获得积分10
刚刚
华仔应助郑洋采纳,获得10
1秒前
1秒前
1秒前
傲娇人达发布了新的文献求助10
2秒前
2秒前
Matthew_G完成签到,获得积分10
3秒前
hhh完成签到,获得积分10
3秒前
杜慧玲完成签到,获得积分20
3秒前
4秒前
5秒前
酆阁完成签到,获得积分10
5秒前
Xie发布了新的文献求助10
6秒前
6秒前
苏打完成签到,获得积分10
6秒前
SXYYY完成签到,获得积分10
6秒前
姜雪儿完成签到,获得积分20
6秒前
7秒前
xixi完成签到,获得积分20
7秒前
7秒前
臭屁萌发布了新的文献求助10
7秒前
夜半微风发布了新的文献求助10
7秒前
白白发布了新的文献求助10
8秒前
高景行完成签到 ,获得积分10
8秒前
纯真听安发布了新的文献求助10
9秒前
pangminmin完成签到,获得积分10
9秒前
yue完成签到 ,获得积分10
9秒前
科研通AI6应助蔡佩翰采纳,获得10
9秒前
wanci应助王小姐不吃药采纳,获得10
10秒前
害怕的路灯完成签到,获得积分10
11秒前
独坐幽篁里完成签到,获得积分10
11秒前
陈女士发布了新的文献求助10
12秒前
doa发布了新的文献求助10
13秒前
666完成签到,获得积分10
13秒前
nn完成签到,获得积分10
14秒前
大模型应助黄启烽采纳,获得10
14秒前
14秒前
15秒前
16秒前
星辰大海应助guo采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434617
求助须知:如何正确求助?哪些是违规求助? 4546969
关于积分的说明 14205190
捐赠科研通 4466978
什么是DOI,文献DOI怎么找? 2448366
邀请新用户注册赠送积分活动 1439268
关于科研通互助平台的介绍 1416060