Critical node identification in network cascading failure based on load percolation

级联故障 相互依存的网络 计算机科学 节点(物理) 渗透(认知心理学) 复杂网络 渗流理论 脆弱性(计算) 鉴定(生物学) 网络拓扑 关键基础设施 分布式计算 计算机网络 网络管理 拓扑(电路) 工程类 电力系统 计算机安全 功率(物理) 电气工程 神经科学 万维网 物理 生物 结构工程 量子力学 植物
作者
Hangyu Hu,Fan Wu,Xie Xiaowei,Qiang Wei,Xuemeng Zhai,Guangmin Hu
出处
期刊:Electronic research archive [American Institute of Mathematical Sciences]
卷期号:31 (3): 1524-1542 被引量:4
标识
DOI:10.3934/era.2023077
摘要

<abstract> <p>Identification of network vulnerability is one of the important means of cyberspace operation, management and security. As a typical case of network vulnerability, network cascading failures are often found in infrastructure networks such as the power grid system, communication network and road traffic, where the failure of a few nodes may cause devastating disasters to the whole complex system. Therefore, it is very important to identify the critical nodes in the network cascading failure and understand the internal laws of cascading failure in complex systems so as to fully grasp the vulnerability of complex systems and develop a network management strategy. The existing models for cascading failure analysis mainly evaluate the criticality of nodes by quantifying their importance in the network structure. However, they ignore the important load, node capacity and other attributes in the cascading failure model. In order to address those limitations, this paper proposes a novel critical node identification method in the load network from the perspective of a network adversarial attack. On the basis of obtaining a relatively complete topology, first, the network attack can be modeled as a cascading failure problem for the load network. Then, the concept of load percolation is proposed according to the percolation theory, which is used to construct the load percolation model in the cascading failure problem. After that, the identification method of critical nodes is developed based on the load percolation, which accurately identifies the vulnerable nodes. The experimental results show that the load percolation parameter can discover the affected nodes more accurately, and the final effect is better than those of the existing methods.</p> </abstract>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ulung完成签到 ,获得积分10
刚刚
cccf发布了新的文献求助10
1秒前
皇家咖啡完成签到 ,获得积分10
1秒前
茉莉猫哟完成签到,获得积分10
2秒前
思源应助Chou采纳,获得10
2秒前
Wangdx完成签到 ,获得积分10
2秒前
大力的白云完成签到 ,获得积分10
2秒前
陈末应助二大爷采纳,获得10
2秒前
外向的鑫发布了新的文献求助30
2秒前
3秒前
保护番茄发布了新的文献求助10
3秒前
哇哈哈哈完成签到,获得积分10
3秒前
4秒前
cherish完成签到 ,获得积分10
5秒前
Orange应助lixm采纳,获得10
5秒前
5秒前
5秒前
xm完成签到,获得积分10
6秒前
沉着豆腐完成签到,获得积分10
6秒前
Leif发布了新的文献求助10
7秒前
憨憨完成签到,获得积分10
7秒前
8秒前
英俊愚志发布了新的文献求助10
9秒前
9秒前
一个饼给一个饼的求助进行了留言
9秒前
啊哦完成签到 ,获得积分10
9秒前
哈哈哈发布了新的文献求助10
10秒前
小蘑菇应助0713采纳,获得10
11秒前
米奇完成签到 ,获得积分10
11秒前
zhige完成签到 ,获得积分10
11秒前
戴路发布了新的文献求助10
11秒前
cccf完成签到,获得积分10
12秒前
12秒前
12秒前
14秒前
Monkwy发布了新的文献求助10
14秒前
14秒前
X123完成签到 ,获得积分10
16秒前
xiaolianwheat发布了新的文献求助10
16秒前
WANGJD发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429055
求助须知:如何正确求助?哪些是违规求助? 4542625
关于积分的说明 14181735
捐赠科研通 4460343
什么是DOI,文献DOI怎么找? 2445678
邀请新用户注册赠送积分活动 1436859
关于科研通互助平台的介绍 1414080