Critical node identification in network cascading failure based on load percolation

级联故障 相互依存的网络 计算机科学 节点(物理) 渗透(认知心理学) 复杂网络 渗流理论 脆弱性(计算) 鉴定(生物学) 网络拓扑 关键基础设施 分布式计算 计算机网络 网络管理 拓扑(电路) 工程类 电力系统 计算机安全 功率(物理) 电气工程 神经科学 万维网 物理 生物 结构工程 量子力学 植物
作者
Hangyu Hu,Fan Wu,Xie Xiaowei,Qiang Wei,Xuemeng Zhai,Guangmin Hu
出处
期刊:Electronic research archive [American Institute of Mathematical Sciences]
卷期号:31 (3): 1524-1542 被引量:4
标识
DOI:10.3934/era.2023077
摘要

<abstract> <p>Identification of network vulnerability is one of the important means of cyberspace operation, management and security. As a typical case of network vulnerability, network cascading failures are often found in infrastructure networks such as the power grid system, communication network and road traffic, where the failure of a few nodes may cause devastating disasters to the whole complex system. Therefore, it is very important to identify the critical nodes in the network cascading failure and understand the internal laws of cascading failure in complex systems so as to fully grasp the vulnerability of complex systems and develop a network management strategy. The existing models for cascading failure analysis mainly evaluate the criticality of nodes by quantifying their importance in the network structure. However, they ignore the important load, node capacity and other attributes in the cascading failure model. In order to address those limitations, this paper proposes a novel critical node identification method in the load network from the perspective of a network adversarial attack. On the basis of obtaining a relatively complete topology, first, the network attack can be modeled as a cascading failure problem for the load network. Then, the concept of load percolation is proposed according to the percolation theory, which is used to construct the load percolation model in the cascading failure problem. After that, the identification method of critical nodes is developed based on the load percolation, which accurately identifies the vulnerable nodes. The experimental results show that the load percolation parameter can discover the affected nodes more accurately, and the final effect is better than those of the existing methods.</p> </abstract>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sln完成签到,获得积分20
1秒前
2秒前
无风完成签到 ,获得积分10
2秒前
ZhangDaying完成签到 ,获得积分10
2秒前
Cutewm完成签到,获得积分10
2秒前
Hl关闭了Hl文献求助
4秒前
今后应助777采纳,获得10
4秒前
天天快乐应助tanjuan采纳,获得10
5秒前
呆萌雪晴完成签到,获得积分20
6秒前
wangcc发布了新的文献求助80
7秒前
7秒前
柳叶小弯刀完成签到,获得积分10
8秒前
zoie0809完成签到,获得积分10
9秒前
香蕉觅云应助Dasph7采纳,获得10
10秒前
11秒前
11秒前
12秒前
ziyue发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
沉默发布了新的文献求助10
15秒前
无风完成签到 ,获得积分10
15秒前
16秒前
777发布了新的文献求助10
17秒前
54132123完成签到,获得积分10
17秒前
SciGPT应助leng采纳,获得10
17秒前
tanjuan发布了新的文献求助10
17秒前
18秒前
Blurred发布了新的文献求助10
19秒前
羊羊羊完成签到,获得积分10
20秒前
传奇3应助猪猪侠采纳,获得10
21秒前
炸天完成签到 ,获得积分10
23秒前
Dasph7发布了新的文献求助10
24秒前
韩soso发布了新的文献求助10
25秒前
25秒前
27秒前
leng发布了新的文献求助10
29秒前
荇子陌陌发布了新的文献求助10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304447
求助须知:如何正确求助?哪些是违规求助? 2938403
关于积分的说明 8488621
捐赠科研通 2612878
什么是DOI,文献DOI怎么找? 1426966
科研通“疑难数据库(出版商)”最低求助积分说明 662879
邀请新用户注册赠送积分活动 647376