Lorenzo Capponi,Trey Oldham,Matthew Konnik,Kelly A. Stephani,Daniel J. Bodony,Marco Panesi,Gregory S. Elliott,Francesco Panerai
标识
DOI:10.2514/6.2023-1338
摘要
Inductively coupled plasma wind tunnels accurately replicate the harsh conditions that hypersonic vehicles experience during the atmospheric reentry phase. With the ability to reproduce aerothermal heating and the chemistry of hypersonic flight, phenomena such as gas-surface interactions, heat shield ablation response, aero-optics, and non-equilibrium plasma can be investigated in a pristine and flexible test environment. This paper describes the new Plasmatron X inductively coupled plasma (ICP) facility developed by the Center for Hypersonics \& Entry Systems Studies (CHESS) at the University of Illinois Urbana-Champaign. At 350 kW, Plasmatron X is currently the largest ICP facility in the United States, which allows near-continuous operation, dedicated to aerothermal testing for hypersonic flight and reentry environments. A description of the facility's unique capabilities, characterization of the operating conditions, and a survey of the aerothermal test environment are provided, focusing on cold-wall stagnation-point heat flux and stagnation pressure characterization, as well as plasma jet unsteadiness through high-speed imaging under different operating conditions.