MiTFed: A Privacy Preserving Collaborative Network Attack Mitigation Framework Based on Federated Learning Using SDN and Blockchain

计算机科学 入侵检测系统 服务拒绝攻击 计算机安全 领域(数学) 人工智能 机器学习 互联网 万维网 数学 纯数学
作者
Zakaria Abou El Houda,Abdelhakim Hafid,Lyes Khoukhi
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (4): 1985-2001 被引量:64
标识
DOI:10.1109/tnse.2023.3237367
摘要

Distributed denial-of-service (DDoS) attacks continue to grow at a rapid rate plaguing Internet Service Providers (ISPs) and individuals in a stealthy way. Thus, intrusion detection systems (IDSs) must evolve to cope with these increasingly sophisticated and challenging security threats. Traditional IDSs are prone to zero-day attacks since they are usually signature-based detection systems. The recent advent of machine learning and deep learning (ML/DL) techniques can help strengthen these IDSs. However, the lack of up-to-date labeled training datasets makes these ML/DL based IDSs inefficient. The privacy nature of these datasets and widespread emergence of adversarial attacks make it difficult for major organizations to share their sensitive data. Federated Learning (FL) is gaining momentum from both academia and industry as a new sub-field of ML that aims to train a global statistical model across multiple distributed users, referred to as collaborators, without sharing their private data. Due to its privacy-preserving nature, FL has the potential to enable privacy-aware learning between a large number of collaborators. This paper presents a novel framework, called MiTFed, that allows multiple software defined networks (SDN) domains ( $i.e.,$ collaborators) to collaboratively build a global intrusion detection model without sharing their sensitive datasets. In particular, MiTFed consists of: (1) a novel distributed architecture that allows multiple SDN based domains to securely collaborate in order to cope with sophisticated security threats while preserving the privacy of each SDN domain; (2) a novel Secure Multiparty Computation (SMPC) scheme to securely aggregate local model updates; and (3) a blockchain based scheme that uses Ethereum smart contracts to maintain the collaboration in a fully decentralized, trustworthy, flexible, and efficient manner. To the best of our knowledge, MiTFed is the first framework that leverages FL, blockchain and SDN technologies to mitigate the new emerging security threats in large scale. To evaluate MiTFed, we conduct several experiments using real-world network attacks; the experimental results using the well-known public network security dataset NSL-KDD show that MiTFed achieves efficiency and high accuracy in detecting the new emerging security threats in both binary and multi-class classification while preserving the privacy of collaborators, making it a promising framework to cope with the new emerging security threats in SDN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yvonne发布了新的文献求助10
刚刚
刚刚
温柔的十三完成签到,获得积分10
刚刚
Ll发布了新的文献求助10
1秒前
nikai发布了新的文献求助10
1秒前
圣晟胜发布了新的文献求助10
1秒前
大个应助科研通管家采纳,获得10
1秒前
1秒前
田様应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
Leif应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
shouyu29应助科研通管家采纳,获得10
2秒前
2秒前
小金应助科研通管家采纳,获得20
2秒前
牛逼的昂完成签到,获得积分10
2秒前
muzi给muzi的求助进行了留言
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
Jasper应助科研通管家采纳,获得10
3秒前
yuhang完成签到 ,获得积分10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
果汁完成签到,获得积分10
3秒前
NexusExplorer应助Zoe采纳,获得10
3秒前
MADKAI发布了新的文献求助10
4秒前
4秒前
领导范儿应助junzilan采纳,获得10
5秒前
打打应助激动的一手采纳,获得10
5秒前
酷波er应助艺玲采纳,获得10
6秒前
longtengfei发布了新的文献求助10
6秒前
7秒前
7秒前
ZL发布了新的文献求助10
9秒前
luca发布了新的文献求助10
9秒前
ruby发布了新的文献求助10
9秒前
沉静的颦发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759