MiTFed: A Privacy Preserving Collaborative Network Attack Mitigation Framework Based on Federated Learning Using SDN and Blockchain

计算机科学 入侵检测系统 服务拒绝攻击 计算机安全 领域(数学) 人工智能 机器学习 互联网 万维网 数学 纯数学
作者
Zakaria Abou El Houda,Abdelhakim Hafid,Lyes Khoukhi
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (4): 1985-2001 被引量:11
标识
DOI:10.1109/tnse.2023.3237367
摘要

Distributed denial-of-service (DDoS) attacks continue to grow at a rapid rate plaguing Internet Service Providers (ISPs) and individuals in a stealthy way. Thus, intrusion detection systems (IDSs) must evolve to cope with these increasingly sophisticated and challenging security threats. Traditional IDSs are prone to zero-day attacks since they are usually signature-based detection systems. The recent advent of machine learning and deep learning (ML/DL) techniques can help strengthen these IDSs. However, the lack of up-to-date labeled training datasets makes these ML/DL based IDSs inefficient. The privacy nature of these datasets and widespread emergence of adversarial attacks make it difficult for major organizations to share their sensitive data. Federated Learning (FL) is gaining momentum from both academia and industry as a new sub-field of ML that aims to train a global statistical model across multiple distributed users, referred to as collaborators, without sharing their private data. Due to its privacy-preserving nature, FL has the potential to enable privacy-aware learning between a large number of collaborators. This paper presents a novel framework, called MiTFed, that allows multiple software defined networks (SDN) domains ( $i.e.,$ collaborators) to collaboratively build a global intrusion detection model without sharing their sensitive datasets. In particular, MiTFed consists of: (1) a novel distributed architecture that allows multiple SDN based domains to securely collaborate in order to cope with sophisticated security threats while preserving the privacy of each SDN domain; (2) a novel Secure Multiparty Computation (SMPC) scheme to securely aggregate local model updates; and (3) a blockchain based scheme that uses Ethereum smart contracts to maintain the collaboration in a fully decentralized, trustworthy, flexible, and efficient manner. To the best of our knowledge, MiTFed is the first framework that leverages FL, blockchain and SDN technologies to mitigate the new emerging security threats in large scale. To evaluate MiTFed, we conduct several experiments using real-world network attacks; the experimental results using the well-known public network security dataset NSL-KDD show that MiTFed achieves efficiency and high accuracy in detecting the new emerging security threats in both binary and multi-class classification while preserving the privacy of collaborators, making it a promising framework to cope with the new emerging security threats in SDN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶糖喵完成签到 ,获得积分10
1秒前
蓝眸完成签到 ,获得积分10
7秒前
GreenDuane完成签到 ,获得积分0
7秒前
赘婿应助Ray采纳,获得10
8秒前
高大的天道完成签到 ,获得积分10
8秒前
小刺完成签到 ,获得积分10
10秒前
jyy应助craftsman采纳,获得10
14秒前
自来也完成签到,获得积分10
28秒前
Hey完成签到 ,获得积分10
30秒前
leo完成签到,获得积分10
31秒前
赘婿应助Singularity采纳,获得10
35秒前
36秒前
CipherSage应助科研通管家采纳,获得10
38秒前
完美世界应助科研通管家采纳,获得10
38秒前
777发布了新的文献求助10
40秒前
meng完成签到 ,获得积分10
40秒前
lilylwy完成签到 ,获得积分10
43秒前
彭于晏应助Singularity采纳,获得10
45秒前
51秒前
zl发布了新的文献求助10
54秒前
zwzxtx完成签到 ,获得积分10
57秒前
自信放光芒~完成签到 ,获得积分10
1分钟前
科研通AI2S应助zl采纳,获得10
1分钟前
科研通AI2S应助banimadao采纳,获得10
1分钟前
坚强的铅笔完成签到 ,获得积分10
1分钟前
Leonardi完成签到,获得积分0
1分钟前
Telomere完成签到 ,获得积分10
1分钟前
banimadao完成签到,获得积分10
1分钟前
amar完成签到 ,获得积分0
1分钟前
herpes完成签到 ,获得积分0
1分钟前
李荷花完成签到 ,获得积分10
1分钟前
郑志凡完成签到 ,获得积分10
1分钟前
千秋完成签到 ,获得积分10
1分钟前
qcck完成签到 ,获得积分10
1分钟前
丘比特应助kylin采纳,获得100
2分钟前
哈哈完成签到,获得积分10
2分钟前
popo6150完成签到,获得积分10
2分钟前
平常从蓉应助明理问柳采纳,获得10
2分钟前
乐乐应助哈哈采纳,获得10
2分钟前
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134020
求助须知:如何正确求助?哪些是违规求助? 2784845
关于积分的说明 7768824
捐赠科研通 2440241
什么是DOI,文献DOI怎么找? 1297353
科研通“疑难数据库(出版商)”最低求助积分说明 624928
版权声明 600792