MiTFed: A Privacy Preserving Collaborative Network Attack Mitigation Framework Based on Federated Learning Using SDN and Blockchain

计算机科学 入侵检测系统 服务拒绝攻击 计算机安全 领域(数学) 人工智能 机器学习 互联网 万维网 数学 纯数学
作者
Zakaria Abou El Houda,Abdelhakim Hafid,Lyes Khoukhi
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (4): 1985-2001 被引量:64
标识
DOI:10.1109/tnse.2023.3237367
摘要

Distributed denial-of-service (DDoS) attacks continue to grow at a rapid rate plaguing Internet Service Providers (ISPs) and individuals in a stealthy way. Thus, intrusion detection systems (IDSs) must evolve to cope with these increasingly sophisticated and challenging security threats. Traditional IDSs are prone to zero-day attacks since they are usually signature-based detection systems. The recent advent of machine learning and deep learning (ML/DL) techniques can help strengthen these IDSs. However, the lack of up-to-date labeled training datasets makes these ML/DL based IDSs inefficient. The privacy nature of these datasets and widespread emergence of adversarial attacks make it difficult for major organizations to share their sensitive data. Federated Learning (FL) is gaining momentum from both academia and industry as a new sub-field of ML that aims to train a global statistical model across multiple distributed users, referred to as collaborators, without sharing their private data. Due to its privacy-preserving nature, FL has the potential to enable privacy-aware learning between a large number of collaborators. This paper presents a novel framework, called MiTFed, that allows multiple software defined networks (SDN) domains ( $i.e.,$ collaborators) to collaboratively build a global intrusion detection model without sharing their sensitive datasets. In particular, MiTFed consists of: (1) a novel distributed architecture that allows multiple SDN based domains to securely collaborate in order to cope with sophisticated security threats while preserving the privacy of each SDN domain; (2) a novel Secure Multiparty Computation (SMPC) scheme to securely aggregate local model updates; and (3) a blockchain based scheme that uses Ethereum smart contracts to maintain the collaboration in a fully decentralized, trustworthy, flexible, and efficient manner. To the best of our knowledge, MiTFed is the first framework that leverages FL, blockchain and SDN technologies to mitigate the new emerging security threats in large scale. To evaluate MiTFed, we conduct several experiments using real-world network attacks; the experimental results using the well-known public network security dataset NSL-KDD show that MiTFed achieves efficiency and high accuracy in detecting the new emerging security threats in both binary and multi-class classification while preserving the privacy of collaborators, making it a promising framework to cope with the new emerging security threats in SDN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
236完成签到,获得积分10
1秒前
2秒前
CornellRong发布了新的文献求助200
6秒前
6秒前
6秒前
考拉完成签到 ,获得积分10
8秒前
surain完成签到,获得积分10
9秒前
香菜卷煎饼完成签到,获得积分10
10秒前
111111完成签到,获得积分10
11秒前
Li发布了新的文献求助10
11秒前
天天快乐应助wangxiaobin采纳,获得10
13秒前
13秒前
无花果应助刀锋采纳,获得10
15秒前
luiii完成签到,获得积分10
16秒前
wanci应助文静映安采纳,获得10
16秒前
sys发布了新的文献求助10
17秒前
Blaseaka完成签到 ,获得积分10
17秒前
20秒前
24秒前
25秒前
fuyuhaoy完成签到,获得积分10
26秒前
刀锋发布了新的文献求助10
28秒前
火火火木完成签到 ,获得积分10
28秒前
pluvia完成签到,获得积分10
32秒前
32秒前
32秒前
SYLH应助Sean采纳,获得20
32秒前
moreorless_zjh完成签到,获得积分10
34秒前
35秒前
gfbh完成签到,获得积分10
37秒前
37秒前
39秒前
LGH发布了新的文献求助10
40秒前
重重完成签到 ,获得积分10
40秒前
龅牙苏发布了新的文献求助10
41秒前
44秒前
有魅力甜瓜完成签到,获得积分20
46秒前
拾石子完成签到 ,获得积分10
47秒前
木子梨狸完成签到,获得积分10
50秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496397
关于积分的说明 11081817
捐赠科研通 3226886
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800997