MiTFed: A Privacy Preserving Collaborative Network Attack Mitigation Framework Based on Federated Learning Using SDN and Blockchain

计算机科学 入侵检测系统 服务拒绝攻击 计算机安全 领域(数学) 人工智能 机器学习 互联网 万维网 数学 纯数学
作者
Zakaria Abou El Houda,Abdelhakim Hafid,Lyes Khoukhi
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (4): 1985-2001 被引量:64
标识
DOI:10.1109/tnse.2023.3237367
摘要

Distributed denial-of-service (DDoS) attacks continue to grow at a rapid rate plaguing Internet Service Providers (ISPs) and individuals in a stealthy way. Thus, intrusion detection systems (IDSs) must evolve to cope with these increasingly sophisticated and challenging security threats. Traditional IDSs are prone to zero-day attacks since they are usually signature-based detection systems. The recent advent of machine learning and deep learning (ML/DL) techniques can help strengthen these IDSs. However, the lack of up-to-date labeled training datasets makes these ML/DL based IDSs inefficient. The privacy nature of these datasets and widespread emergence of adversarial attacks make it difficult for major organizations to share their sensitive data. Federated Learning (FL) is gaining momentum from both academia and industry as a new sub-field of ML that aims to train a global statistical model across multiple distributed users, referred to as collaborators, without sharing their private data. Due to its privacy-preserving nature, FL has the potential to enable privacy-aware learning between a large number of collaborators. This paper presents a novel framework, called MiTFed, that allows multiple software defined networks (SDN) domains ( $i.e.,$ collaborators) to collaboratively build a global intrusion detection model without sharing their sensitive datasets. In particular, MiTFed consists of: (1) a novel distributed architecture that allows multiple SDN based domains to securely collaborate in order to cope with sophisticated security threats while preserving the privacy of each SDN domain; (2) a novel Secure Multiparty Computation (SMPC) scheme to securely aggregate local model updates; and (3) a blockchain based scheme that uses Ethereum smart contracts to maintain the collaboration in a fully decentralized, trustworthy, flexible, and efficient manner. To the best of our knowledge, MiTFed is the first framework that leverages FL, blockchain and SDN technologies to mitigate the new emerging security threats in large scale. To evaluate MiTFed, we conduct several experiments using real-world network attacks; the experimental results using the well-known public network security dataset NSL-KDD show that MiTFed achieves efficiency and high accuracy in detecting the new emerging security threats in both binary and multi-class classification while preserving the privacy of collaborators, making it a promising framework to cope with the new emerging security threats in SDN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香橙完成签到,获得积分10
刚刚
DONG发布了新的文献求助10
1秒前
机智芝发布了新的文献求助10
5秒前
Liu发布了新的文献求助10
6秒前
深情安青应助蓝天采纳,获得10
7秒前
大模型应助彪壮的吐司采纳,获得10
7秒前
9秒前
vousme完成签到 ,获得积分10
10秒前
10秒前
张帆发布了新的文献求助10
11秒前
等乙天发布了新的文献求助10
14秒前
F-超哥完成签到,获得积分10
15秒前
15秒前
我是老大应助lili采纳,获得10
18秒前
linhappy完成签到 ,获得积分10
18秒前
18秒前
骨科小李完成签到,获得积分10
18秒前
painting应助柚子苏采纳,获得10
18秒前
琪琪完成签到,获得积分10
19秒前
外向的易蓉完成签到 ,获得积分10
19秒前
科研通AI6应助蜗牛采纳,获得10
19秒前
22秒前
憯懔完成签到,获得积分10
22秒前
AspenW完成签到,获得积分10
23秒前
23秒前
xchi发布了新的文献求助10
26秒前
26秒前
27秒前
orixero应助可爱的胖嘟嘟采纳,获得10
27秒前
慕青应助闭眼听风雨采纳,获得10
27秒前
啵啵鱼发布了新的文献求助10
28秒前
28秒前
28秒前
蓝天发布了新的文献求助10
29秒前
zhonglv7应助科研通管家采纳,获得10
32秒前
littleknees应助科研通管家采纳,获得10
32秒前
SciGPT应助科研通管家采纳,获得10
32秒前
桐桐应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
niNe3YUE应助科研通管家采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563431
求助须知:如何正确求助?哪些是违规求助? 4648294
关于积分的说明 14684348
捐赠科研通 4590281
什么是DOI,文献DOI怎么找? 2518423
邀请新用户注册赠送积分活动 1491102
关于科研通互助平台的介绍 1462386