MiTFed: A Privacy Preserving Collaborative Network Attack Mitigation Framework Based on Federated Learning Using SDN and Blockchain

计算机科学 入侵检测系统 服务拒绝攻击 计算机安全 领域(数学) 人工智能 机器学习 互联网 万维网 数学 纯数学
作者
Zakaria Abou El Houda,Abdelhakim Hafid,Lyes Khoukhi
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (4): 1985-2001 被引量:64
标识
DOI:10.1109/tnse.2023.3237367
摘要

Distributed denial-of-service (DDoS) attacks continue to grow at a rapid rate plaguing Internet Service Providers (ISPs) and individuals in a stealthy way. Thus, intrusion detection systems (IDSs) must evolve to cope with these increasingly sophisticated and challenging security threats. Traditional IDSs are prone to zero-day attacks since they are usually signature-based detection systems. The recent advent of machine learning and deep learning (ML/DL) techniques can help strengthen these IDSs. However, the lack of up-to-date labeled training datasets makes these ML/DL based IDSs inefficient. The privacy nature of these datasets and widespread emergence of adversarial attacks make it difficult for major organizations to share their sensitive data. Federated Learning (FL) is gaining momentum from both academia and industry as a new sub-field of ML that aims to train a global statistical model across multiple distributed users, referred to as collaborators, without sharing their private data. Due to its privacy-preserving nature, FL has the potential to enable privacy-aware learning between a large number of collaborators. This paper presents a novel framework, called MiTFed, that allows multiple software defined networks (SDN) domains ( $i.e.,$ collaborators) to collaboratively build a global intrusion detection model without sharing their sensitive datasets. In particular, MiTFed consists of: (1) a novel distributed architecture that allows multiple SDN based domains to securely collaborate in order to cope with sophisticated security threats while preserving the privacy of each SDN domain; (2) a novel Secure Multiparty Computation (SMPC) scheme to securely aggregate local model updates; and (3) a blockchain based scheme that uses Ethereum smart contracts to maintain the collaboration in a fully decentralized, trustworthy, flexible, and efficient manner. To the best of our knowledge, MiTFed is the first framework that leverages FL, blockchain and SDN technologies to mitigate the new emerging security threats in large scale. To evaluate MiTFed, we conduct several experiments using real-world network attacks; the experimental results using the well-known public network security dataset NSL-KDD show that MiTFed achieves efficiency and high accuracy in detecting the new emerging security threats in both binary and multi-class classification while preserving the privacy of collaborators, making it a promising framework to cope with the new emerging security threats in SDN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到 ,获得积分10
1秒前
wbb完成签到 ,获得积分10
4秒前
qqqdewq完成签到,获得积分10
4秒前
dingtao发布了新的文献求助10
5秒前
开心的寄灵完成签到 ,获得积分10
6秒前
情怀应助pazhao采纳,获得10
8秒前
阿南完成签到 ,获得积分10
10秒前
善良的嫣完成签到 ,获得积分10
12秒前
照亮世界的ay完成签到,获得积分10
13秒前
Qian完成签到 ,获得积分10
16秒前
17秒前
mosisa完成签到,获得积分20
19秒前
嘚儿塔完成签到,获得积分10
21秒前
马淑贤完成签到 ,获得积分10
22秒前
正直的松鼠完成签到 ,获得积分10
25秒前
陶醉的又夏完成签到 ,获得积分10
26秒前
科研韭菜完成签到 ,获得积分10
29秒前
31秒前
秋秋完成签到,获得积分10
32秒前
伍六七完成签到,获得积分10
34秒前
英姑应助科研通管家采纳,获得10
34秒前
风清扬应助科研通管家采纳,获得30
34秒前
Xiaoxiao应助科研通管家采纳,获得10
34秒前
科目三应助科研通管家采纳,获得10
34秒前
蒸馏水完成签到,获得积分10
42秒前
43秒前
量子星尘发布了新的文献求助10
45秒前
CYQ完成签到 ,获得积分10
46秒前
温梦花雨完成签到 ,获得积分10
49秒前
害羞的雁易完成签到 ,获得积分10
50秒前
51秒前
小苏发布了新的文献求助10
55秒前
59秒前
柳叶刀Z完成签到 ,获得积分10
1分钟前
macleod发布了新的文献求助10
1分钟前
风笛完成签到 ,获得积分10
1分钟前
1分钟前
LY0430完成签到 ,获得积分10
1分钟前
1分钟前
gk完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685708
关于积分的说明 14838825
捐赠科研通 4673854
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471067