清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MiTFed: A Privacy Preserving Collaborative Network Attack Mitigation Framework Based on Federated Learning Using SDN and Blockchain

计算机科学 入侵检测系统 服务拒绝攻击 计算机安全 领域(数学) 人工智能 机器学习 互联网 万维网 数学 纯数学
作者
Zakaria Abou El Houda,Abdelhakim Hafid,Lyes Khoukhi
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (4): 1985-2001 被引量:64
标识
DOI:10.1109/tnse.2023.3237367
摘要

Distributed denial-of-service (DDoS) attacks continue to grow at a rapid rate plaguing Internet Service Providers (ISPs) and individuals in a stealthy way. Thus, intrusion detection systems (IDSs) must evolve to cope with these increasingly sophisticated and challenging security threats. Traditional IDSs are prone to zero-day attacks since they are usually signature-based detection systems. The recent advent of machine learning and deep learning (ML/DL) techniques can help strengthen these IDSs. However, the lack of up-to-date labeled training datasets makes these ML/DL based IDSs inefficient. The privacy nature of these datasets and widespread emergence of adversarial attacks make it difficult for major organizations to share their sensitive data. Federated Learning (FL) is gaining momentum from both academia and industry as a new sub-field of ML that aims to train a global statistical model across multiple distributed users, referred to as collaborators, without sharing their private data. Due to its privacy-preserving nature, FL has the potential to enable privacy-aware learning between a large number of collaborators. This paper presents a novel framework, called MiTFed, that allows multiple software defined networks (SDN) domains ( $i.e.,$ collaborators) to collaboratively build a global intrusion detection model without sharing their sensitive datasets. In particular, MiTFed consists of: (1) a novel distributed architecture that allows multiple SDN based domains to securely collaborate in order to cope with sophisticated security threats while preserving the privacy of each SDN domain; (2) a novel Secure Multiparty Computation (SMPC) scheme to securely aggregate local model updates; and (3) a blockchain based scheme that uses Ethereum smart contracts to maintain the collaboration in a fully decentralized, trustworthy, flexible, and efficient manner. To the best of our knowledge, MiTFed is the first framework that leverages FL, blockchain and SDN technologies to mitigate the new emerging security threats in large scale. To evaluate MiTFed, we conduct several experiments using real-world network attacks; the experimental results using the well-known public network security dataset NSL-KDD show that MiTFed achieves efficiency and high accuracy in detecting the new emerging security threats in both binary and multi-class classification while preserving the privacy of collaborators, making it a promising framework to cope with the new emerging security threats in SDN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1yyyyyy发布了新的文献求助10
4秒前
12秒前
19秒前
称心的晓霜完成签到,获得积分10
39秒前
42秒前
43秒前
量子星尘发布了新的文献求助10
46秒前
47秒前
59秒前
1分钟前
1分钟前
拼搏问薇完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
supermaltose完成签到,获得积分10
1分钟前
1分钟前
yyds完成签到,获得积分0
1分钟前
1分钟前
1分钟前
科研狗的春天完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
輕瘋发布了新的文献求助10
2分钟前
輕瘋完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
葛力完成签到,获得积分10
3分钟前
3分钟前
3分钟前
ZTiamT发布了新的文献求助200
3分钟前
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732460
求助须知:如何正确求助?哪些是违规求助? 5339547
关于积分的说明 15322262
捐赠科研通 4878002
什么是DOI,文献DOI怎么找? 2620838
邀请新用户注册赠送积分活动 1570005
关于科研通互助平台的介绍 1526699