Fast Progressive Differentiable Architecture Search based on adaptive task granularity reorganization

粒度 计算机科学 收缩率 聚类分析 任务(项目管理) 可微函数 人工智能 数学 机器学习 操作系统 数学分析 经济 管理
作者
Junzhong Ji,Xingyu Wang
出处
期刊:Information Sciences [Elsevier]
卷期号:645: 119326-119326 被引量:2
标识
DOI:10.1016/j.ins.2023.119326
摘要

Shrinkage methods reduce the search space of a Differentiable Architecture Search (DARTS) by progressively discarding candidates, which accelerates the search speed. However, their shrinkage strategy suffers from the vulnerability of too fine task granularity. In other words, they drop only one of the least promising candidates per round of shrinkage, which is suboptimal in terms of performance and efficiency. In this study, we introduce the concept of Granular Computing (GrC) into the shrinkage method and present a Fast Progressive Differentiable Architecture Search (FP-DARTS) method. This method effectively reduces the computational complexity of each round of shrinkage, thereby improving the efficiency and performance of the algorithm. FP-DARTS can be divided into three stages: adaptive granularity division and selection, granular-channel performance evaluation, and progressive shrinkage. In the first stage, to reorganize the task granularity, we cluster the candidate operations into granular-channels and adaptively select the appropriate task granularity. We also propose a dynamic clustering strategy to avoid introducing additional computation. In the second stage, we train the architecture parameters to measure the potential of the granular-channels. In the third stage, to improve the stability of the shrinkage results, we introduce a channel annealing mechanism to smoothly discard unpromising granular-channels. We conducted systematic experiments on CIFAR-10 and ImageNet and achieved a test accuracy of 97.56% on CIFAR-10 with 0.04 GPU-days, and a test accuracy of 75.5% on ImageNet with 1.2 GPU-days. We also conducted experiments on the search space of NAS-Bench-201, and obtained test accuracies of 94.22, 73.07, and 46.23% for CIFAR-10, CIFAR-100 and ImageNet16-120, respectively. The above experimental results demonstrate that FP-DARTS achieves higher search speed and competitive performance compared to other state-of-the-art shrinkage methods and non-shrinkage methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包容友儿发布了新的文献求助10
1秒前
博闻发布了新的文献求助10
1秒前
草莓熊完成签到,获得积分10
3秒前
二掌柜完成签到,获得积分10
3秒前
乖乖完成签到,获得积分10
3秒前
4秒前
掌灯师完成签到,获得积分20
4秒前
4秒前
花开米兰城完成签到,获得积分10
5秒前
汉堡包应助123采纳,获得10
5秒前
Wfmmm完成签到,获得积分10
7秒前
Dabiel1213完成签到,获得积分10
7秒前
7秒前
dev-evo完成签到,获得积分10
8秒前
8秒前
泓泽发布了新的文献求助10
8秒前
8秒前
sdsd发布了新的文献求助10
8秒前
rgaerva应助Omni采纳,获得10
8秒前
大兔子yo完成签到 ,获得积分10
9秒前
醒醒发布了新的文献求助10
9秒前
10秒前
HXia完成签到 ,获得积分10
10秒前
10秒前
stop here发布了新的文献求助10
11秒前
littleyi应助111采纳,获得10
11秒前
11秒前
化学狗发布了新的文献求助10
11秒前
香蕉觅云应助云_123采纳,获得30
12秒前
Jasper应助1111采纳,获得10
12秒前
小福泥完成签到,获得积分20
13秒前
li完成签到 ,获得积分10
13秒前
13秒前
14秒前
舒心的青亦完成签到,获得积分10
15秒前
科研通AI2S应助科研采纳,获得10
15秒前
anydwason发布了新的文献求助10
15秒前
草莓熊发布了新的文献求助10
15秒前
15秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135616
求助须知:如何正确求助?哪些是违规求助? 2786482
关于积分的说明 7777675
捐赠科研通 2442483
什么是DOI,文献DOI怎么找? 1298583
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847