Fast Progressive Differentiable Architecture Search based on adaptive task granularity reorganization

粒度 计算机科学 收缩率 聚类分析 任务(项目管理) 可微函数 人工智能 数学 机器学习 数学分析 管理 经济 操作系统
作者
Junzhong Ji,Xingyu Wang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:645: 119326-119326 被引量:2
标识
DOI:10.1016/j.ins.2023.119326
摘要

Shrinkage methods reduce the search space of a Differentiable Architecture Search (DARTS) by progressively discarding candidates, which accelerates the search speed. However, their shrinkage strategy suffers from the vulnerability of too fine task granularity. In other words, they drop only one of the least promising candidates per round of shrinkage, which is suboptimal in terms of performance and efficiency. In this study, we introduce the concept of Granular Computing (GrC) into the shrinkage method and present a Fast Progressive Differentiable Architecture Search (FP-DARTS) method. This method effectively reduces the computational complexity of each round of shrinkage, thereby improving the efficiency and performance of the algorithm. FP-DARTS can be divided into three stages: adaptive granularity division and selection, granular-channel performance evaluation, and progressive shrinkage. In the first stage, to reorganize the task granularity, we cluster the candidate operations into granular-channels and adaptively select the appropriate task granularity. We also propose a dynamic clustering strategy to avoid introducing additional computation. In the second stage, we train the architecture parameters to measure the potential of the granular-channels. In the third stage, to improve the stability of the shrinkage results, we introduce a channel annealing mechanism to smoothly discard unpromising granular-channels. We conducted systematic experiments on CIFAR-10 and ImageNet and achieved a test accuracy of 97.56% on CIFAR-10 with 0.04 GPU-days, and a test accuracy of 75.5% on ImageNet with 1.2 GPU-days. We also conducted experiments on the search space of NAS-Bench-201, and obtained test accuracies of 94.22, 73.07, and 46.23% for CIFAR-10, CIFAR-100 and ImageNet16-120, respectively. The above experimental results demonstrate that FP-DARTS achieves higher search speed and competitive performance compared to other state-of-the-art shrinkage methods and non-shrinkage methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木木发布了新的文献求助10
1秒前
研友_5Z47A5发布了新的文献求助10
1秒前
无心的青槐完成签到,获得积分10
1秒前
Eternitymaria发布了新的文献求助10
2秒前
木笔朱瑾完成签到 ,获得积分10
2秒前
心中的日月完成签到,获得积分10
4秒前
4秒前
无心的钢铁侠完成签到,获得积分10
4秒前
小马甲应助fengjoy采纳,获得10
4秒前
4秒前
pluto应助科研通管家采纳,获得10
4秒前
舒心夜蕾完成签到,获得积分10
5秒前
5秒前
生动路人应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
5秒前
dominate发布了新的文献求助10
5秒前
wpeng326完成签到,获得积分20
5秒前
魔法以琳完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
简单发布了新的文献求助10
8秒前
soso完成签到,获得积分10
9秒前
Ava应助七页禾采纳,获得10
10秒前
11秒前
顺利毕业发布了新的文献求助10
11秒前
爆米花应助junzpeng采纳,获得10
13秒前
共享精神应助龚幻梦采纳,获得10
15秒前
17秒前
helpmepaper完成签到,获得积分0
17秒前
冰美式关注了科研通微信公众号
18秒前
isle关注了科研通微信公众号
20秒前
21秒前
姽婳wy发布了新的文献求助10
21秒前
22秒前
wangqiuyun发布了新的文献求助10
26秒前
keyanli完成签到,获得积分10
26秒前
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010813
求助须知:如何正确求助?哪些是违规求助? 3550492
关于积分的说明 11305855
捐赠科研通 3284855
什么是DOI,文献DOI怎么找? 1810889
邀请新用户注册赠送积分活动 886574
科研通“疑难数据库(出版商)”最低求助积分说明 811505