Dual-scale Contrastive Learning for multi-behavior recommendation

计算机科学 人工智能 图形 利用 特征学习 机器学习 自然语言处理 理论计算机科学 计算机安全
作者
Qingfeng Li,Huifang Ma,Ruoyi Zhang,Wangyu Jin,Zhixin Li
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:144: 110523-110523 被引量:4
标识
DOI:10.1016/j.asoc.2023.110523
摘要

Multi-behavior recommendation (MBR) aims to improve the prediction of the target behavior (i.e., purchase) by exploiting multi-typed auxiliary behaviors, such as page view, cart and favorite. Recently, leveraging Graph Neural Networks (GNNs) to capture collaborative signals has been the mainstream paradigm for MBR. However, GNN-based MBR suffers from data sparsity in real-world scenarios and thus performs mediocrely. Excitingly, contrastive learning which can mine additional self-supervised signals from raw data, holds great potential to alleviate this problem. Naturally, we seek to exploit contrastive learning to enhance MBR, while two key challenges have yet to be addressed: (i) Difficult to learn reliable representations under different behaviors; (ii) Sparse supervised signals under target behavior. To tackle the above challenges, in this paper, we propose a novel Dual-Scale Contrastive Learning (DSCL) framework. Unlike traditional contrastive learning methods that artificially construct two views through data augmentation, we comprehensively consider two different views for MBR, including the collaborative view and the semantic view. Specifically, we regard the user–item graph as a collaborative view and the user–user graph as a semantic view. In particular, we develop two novel contrastive learning objectives at two scales. For the first challenge, we devise local-to-context contrastive learning within behaviors on collaborative view, which enhances the representation learning by incorporating potential neighbors into the contrastive learning from the graph topological space and the semantic space, respectively. As for the second challenge, we design local-to-local contrastive learning across behaviors on a semantic view, which has the benefit of capturing commonalities between different behaviors and integrating them into the target behavior to alleviate the sparse supervised signal problem of the target behavior. In addition, we also propose an adaptive weight network to efficiently customize the integration of all losses. Extensive experiments on three real-world benchmark datasets show that our proposed DSCL is significantly superior to various state-of-the-art recommendation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LQ发布了新的文献求助10
刚刚
慕青应助芝士雪豹采纳,获得10
刚刚
1秒前
1秒前
dayu发布了新的文献求助10
2秒前
小明发布了新的文献求助10
2秒前
坦率珍发布了新的文献求助10
3秒前
3秒前
1111发布了新的文献求助10
4秒前
华仔应助Dou_Xiaowen采纳,获得10
5秒前
5秒前
5秒前
偤萸发布了新的文献求助10
6秒前
星辰大海应助木子采纳,获得10
6秒前
直率月亮发布了新的文献求助10
7秒前
如意如意按我心意完成签到,获得积分10
10秒前
10秒前
Yang发布了新的文献求助10
10秒前
Coraline应助lppp采纳,获得10
10秒前
dayu完成签到,获得积分10
10秒前
11秒前
冲天小猪完成签到,获得积分10
12秒前
bemyselfelsa完成签到,获得积分10
13秒前
充电宝应助小明采纳,获得10
14秒前
Owen应助小洋同学可能不在采纳,获得10
14秒前
14秒前
所所应助皮崇知采纳,获得10
16秒前
橘子会武功完成签到,获得积分10
18秒前
小马甲应助LQ采纳,获得10
18秒前
19秒前
fanfan完成签到 ,获得积分10
20秒前
天行者发布了新的文献求助10
20秒前
lppp应助文件撤销了驳回
21秒前
21秒前
22秒前
Superg发布了新的文献求助10
22秒前
小桔青山完成签到,获得积分10
23秒前
24秒前
ldy完成签到,获得积分10
25秒前
sssss发布了新的文献求助10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966822
求助须知:如何正确求助?哪些是违规求助? 3512333
关于积分的说明 11162715
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432