亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual-scale Contrastive Learning for multi-behavior recommendation

计算机科学 人工智能 图形 利用 特征学习 机器学习 自然语言处理 理论计算机科学 计算机安全
作者
Qingfeng Li,Huifang Ma,Ruoyi Zhang,Wangyu Jin,Zhixin Li
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:144: 110523-110523 被引量:4
标识
DOI:10.1016/j.asoc.2023.110523
摘要

Multi-behavior recommendation (MBR) aims to improve the prediction of the target behavior (i.e., purchase) by exploiting multi-typed auxiliary behaviors, such as page view, cart and favorite. Recently, leveraging Graph Neural Networks (GNNs) to capture collaborative signals has been the mainstream paradigm for MBR. However, GNN-based MBR suffers from data sparsity in real-world scenarios and thus performs mediocrely. Excitingly, contrastive learning which can mine additional self-supervised signals from raw data, holds great potential to alleviate this problem. Naturally, we seek to exploit contrastive learning to enhance MBR, while two key challenges have yet to be addressed: (i) Difficult to learn reliable representations under different behaviors; (ii) Sparse supervised signals under target behavior. To tackle the above challenges, in this paper, we propose a novel Dual-Scale Contrastive Learning (DSCL) framework. Unlike traditional contrastive learning methods that artificially construct two views through data augmentation, we comprehensively consider two different views for MBR, including the collaborative view and the semantic view. Specifically, we regard the user–item graph as a collaborative view and the user–user graph as a semantic view. In particular, we develop two novel contrastive learning objectives at two scales. For the first challenge, we devise local-to-context contrastive learning within behaviors on collaborative view, which enhances the representation learning by incorporating potential neighbors into the contrastive learning from the graph topological space and the semantic space, respectively. As for the second challenge, we design local-to-local contrastive learning across behaviors on a semantic view, which has the benefit of capturing commonalities between different behaviors and integrating them into the target behavior to alleviate the sparse supervised signal problem of the target behavior. In addition, we also propose an adaptive weight network to efficiently customize the integration of all losses. Extensive experiments on three real-world benchmark datasets show that our proposed DSCL is significantly superior to various state-of-the-art recommendation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助fpbovo采纳,获得10
2秒前
名金学南完成签到,获得积分10
5秒前
俭朴蜜蜂完成签到 ,获得积分10
5秒前
13秒前
Omni完成签到,获得积分10
16秒前
远方完成签到,获得积分10
17秒前
云飞扬完成签到 ,获得积分10
17秒前
Clove完成签到 ,获得积分10
21秒前
shweah2003完成签到,获得积分10
25秒前
研友_8y2o0L发布了新的文献求助10
29秒前
33秒前
Jasper应助研友_8y2o0L采纳,获得10
33秒前
34秒前
39秒前
46秒前
sun发布了新的文献求助10
47秒前
57秒前
甜甜的以筠完成签到 ,获得积分10
59秒前
超级绫完成签到 ,获得积分10
1分钟前
宇宙之王宙斯完成签到 ,获得积分10
1分钟前
1分钟前
漂亮夏兰完成签到 ,获得积分10
1分钟前
一路向北发布了新的文献求助10
1分钟前
GGGrigor完成签到,获得积分10
1分钟前
umil完成签到 ,获得积分10
1分钟前
zhang08完成签到,获得积分10
1分钟前
科研通AI2S应助一路向北采纳,获得10
1分钟前
1分钟前
Eager完成签到,获得积分10
1分钟前
1分钟前
隐形曼青应助端庄的越彬采纳,获得10
1分钟前
1分钟前
无限的盼秋完成签到,获得积分10
1分钟前
YANGLan完成签到,获得积分10
1分钟前
阿尼亚发布了新的文献求助10
1分钟前
1分钟前
1分钟前
快乐的C发布了新的文献求助10
2分钟前
fpbovo发布了新的文献求助10
2分钟前
周晴完成签到 ,获得积分10
2分钟前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139490
求助须知:如何正确求助?哪些是违规求助? 2790349
关于积分的说明 7795082
捐赠科研通 2446818
什么是DOI,文献DOI怎么找? 1301448
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146