Multi-domain feature fusion for target color decoding from multichannel neural recordings of pigeons

解码方法 计算机科学 人工智能 模式识别(心理学) 编码(内存) 人工神经网络 特征(语言学) 特征选择 特征提取 融合 集合(抽象数据类型) 哲学 语言学 程序设计语言 电信
作者
Hongxun Li,Ruiqing Liu,Xiaoke Niu,Zhizhong Wang
标识
DOI:10.1117/12.2681309
摘要

The entopallium is a high-level neural structure of the avian visual system that is related to the processing of color- and shape-related information during target recognition. The mechanism underlying it remains unclear and has drawn a considerable amount of research interest. Decoding has invariably been used in relevant studies to verify whether the extracted response-related features contain visual information. However, local field potentials (LFPs) often contain rich features. In this study, We combine the features of different domains to decode color information, including those in the time and frequency domains as well as features related to non-linear and functional network connectivity. To extract valuable response-related features, three types of feature selection methods are compared. The LFP data from the entopallium of a pigeon were recorded during periods of stimulus presentation in which two colors were randomly presented in each trial. The selected feature set was finally used to decode the colors by using several general classifiers. The results showed that the fusion of multi-domain features helped improve decoding performance, and the optimal feature set was a fusion of multiple domains of features. These results improve our understanding of the avian neural mechanisms involved in encoding color-related information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pinging应助讲你ing采纳,获得10
刚刚
小九完成签到 ,获得积分10
1秒前
华仔应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
ivy应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
喵酱完成签到,获得积分10
3秒前
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
敬老院N号应助科研通管家采纳,获得30
3秒前
Hello应助科研通管家采纳,获得10
3秒前
3秒前
Ava应助科研通管家采纳,获得30
3秒前
淡定的思松应助ww采纳,获得10
3秒前
cxh发布了新的文献求助10
4秒前
4秒前
winstar完成签到,获得积分10
4秒前
Amai发布了新的文献求助20
5秒前
langzi发布了新的文献求助10
5秒前
ZH的天方夜谭完成签到,获得积分20
5秒前
酷波er应助Rrr采纳,获得10
5秒前
Rhodomyrtus关注了科研通微信公众号
5秒前
wei完成签到,获得积分10
6秒前
6秒前
Qinruirui完成签到,获得积分10
6秒前
Owen应助xia采纳,获得10
6秒前
ddy完成签到,获得积分10
7秒前
zmy发布了新的文献求助10
7秒前
鳗鱼厉发布了新的文献求助10
7秒前
孤存完成签到 ,获得积分10
7秒前
zho关闭了zho文献求助
7秒前
8秒前
10秒前
aaashirz_完成签到,获得积分10
10秒前
科研通AI2S应助风中寄云采纳,获得10
10秒前
coffeecup1完成签到,获得积分10
12秒前
萌萌许完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794