EGO-Centric, Multi-Scale Co-Simulation to Tackle Large Urban Traffic Scenarios

汽车工业 计算机科学 车头时距 介观物理学 交通模拟 模拟 比例(比率) 本我、自我与超我 微模拟 算法 运输工程 工程类 航空航天工程 物理 心理学 量子力学 精神分析
作者
Balázs Varga,Tamás Ormándi,Tamás Tettamanti
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 57437-57447 被引量:4
标识
DOI:10.1109/access.2023.3284316
摘要

Simulating automotive functions that rely on interaction with other vehicles (e.g., perception-based control or algorithms relying on inter-vehicular communication) created a demand for traffic simulation in the automotive field as well. Large-scale traffic simulation can be used to generate long, synthetic drive-cycles for EGO vehicles with realistic traffic. An EGO vehicle is defined as the vehicle the scenario revolves around, presumably running a control algorithm to be tested. On the other hand, simulating an entire district or city with thousands of vehicles present is superfluous and comes with a heavy computational burden while only the vicinity of the EGO vehicle is relevant. On the other hand, major traffic patterns can that could still influence the nearby traffic (e.g., traffic disruptions farther away) but can be simulated with lesser accuracy. Thus, simulation accuracy far from the EGO vehicle can be traded for simulation speed. This paper achieves this trade-off by co-simulating SUMO in microscopic and mesoscopic modes using Libsumo API. Microsimulated traffic is continuously spawned in an EGO-centered sub-network based on traffic states in the mesoscopic simulation. Simulation results in large urban scenarios suggest that the behavior of the EGO vehicle in terms of velocity distribution, headway distribution, and lane changes accurately matches pure microsimulation while simulation speed increased by $3-10$ times. This result assumes linear time complexity control algorithms with respect to the vehicle number and a single EGO vehicle. Reducing the number of microsimulated vehicles with co-simulation yields even larger simulation speed gains for more computationally complex algorithms. The aggregate (macroscopic) traffic parameters match for both the micro-, meso-, and co-simulated cases. Thus coupling the two simulators does not distort the mesoscopic simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我打发布了新的文献求助30
1秒前
1秒前
QL发布了新的文献求助10
1秒前
vickyyao发布了新的文献求助10
3秒前
3秒前
3秒前
追寻皮卡丘完成签到,获得积分10
4秒前
六个核桃发布了新的文献求助10
4秒前
小马甲应助meimhuang采纳,获得10
4秒前
乖拉发布了新的文献求助10
5秒前
wanci应助现实的访云采纳,获得10
5秒前
小于发布了新的文献求助10
5秒前
JoJo发布了新的文献求助10
5秒前
彳亍发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
jianjiao发布了新的文献求助10
7秒前
虹间发布了新的文献求助10
7秒前
科研通AI2S应助锅里有虾采纳,获得30
7秒前
geeg完成签到,获得积分20
8秒前
万能图书馆应助任性的小C采纳,获得10
8秒前
8秒前
松柏完成签到 ,获得积分10
8秒前
烟花应助踢踢踢踢踢死你采纳,获得30
8秒前
研友_nqv2WZ完成签到,获得积分10
9秒前
C2发布了新的文献求助10
9秒前
风中的逍遥完成签到,获得积分10
10秒前
12秒前
梓泽丘墟应助青青青青采纳,获得10
13秒前
Mint完成签到,获得积分10
13秒前
冷艳笑卉发布了新的文献求助10
14秒前
14秒前
15秒前
慕青应助shai_ga采纳,获得10
15秒前
15秒前
Yy完成签到,获得积分10
16秒前
ttt完成签到,获得积分10
16秒前
34Kenny完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160487
求助须知:如何正确求助?哪些是违规求助? 2811659
关于积分的说明 7892950
捐赠科研通 2470589
什么是DOI,文献DOI怎么找? 1315639
科研通“疑难数据库(出版商)”最低求助积分说明 630910
版权声明 602042