Physics-informed neural networks with adaptive localized artificial viscosity

无粘流 偏微分方程 伯格斯方程 人工神经网络 非线性系统 先验与后验 残余物 应用数学 粘度溶液 粘度 计算机科学 数学 人工智能 算法 物理 数学分析 经典力学 量子力学 认识论 哲学
作者
Emilio J. R. Coutinho,Marcelo J. Dall’Aqua,Levi D. McClenny,Ming Zhong,Ulisses Braga-Neto,Eduardo Gildin
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:489: 112265-112265 被引量:33
标识
DOI:10.1016/j.jcp.2023.112265
摘要

Physics-informed Neural Network (PINN) is a promising tool that has been applied in a variety of physical phenomena described by partial differential equations (PDE). However, it has been observed that PINNs are difficult to train in certain "stiff" problems, which include various nonlinear hyperbolic PDEs that display shocks in their solutions. Recent studies added a diffusion term to the PDE, and an artificial viscosity (AV) value was manually tuned to allow PINNs to solve these problems. In this paper, we propose three approaches to address this problem, none of which rely on an a priori definition of the artificial viscosity value. The first method learns a global AV value, whereas the other two learn localized AV values around the shocks, by means of a parametrized AV map or a residual-based AV map. We applied the proposed methods to the inviscid Burgers equation and the Buckley-Leverett equation, the latter being a classical problem in Petroleum Engineering. The results show that the proposed methods are able to learn both a small AV value and the accurate shock location and improve the approximation error over a nonadaptive global AV alternative method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊二浪发布了新的文献求助10
1秒前
1秒前
晴空万里关注了科研通微信公众号
2秒前
sunzyu发布了新的文献求助10
4秒前
zhangwansen发布了新的文献求助10
4秒前
煎包下油锅关注了科研通微信公众号
4秒前
4秒前
5秒前
Lucas应助Lulusun采纳,获得10
6秒前
Lucas应助weijiechi采纳,获得10
7秒前
8秒前
sunzyu完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
海带发布了新的文献求助10
10秒前
12秒前
虚心元绿发布了新的文献求助10
12秒前
Bio应助葡萄成熟采纳,获得30
12秒前
14秒前
LIHONGYAN发布了新的文献求助10
15秒前
16秒前
17秒前
朝朝完成签到 ,获得积分10
17秒前
SciGPT应助MOMO采纳,获得10
17秒前
zhangwansen完成签到,获得积分10
17秒前
19秒前
19秒前
gg发布了新的文献求助10
20秒前
我就是KKKK发布了新的文献求助10
20秒前
shikaly发布了新的文献求助10
20秒前
益安完成签到,获得积分10
22秒前
高成浩发布了新的文献求助10
23秒前
23秒前
幸运兔发布了新的文献求助10
24秒前
26秒前
首席或雪月完成签到,获得积分10
27秒前
小净完成签到 ,获得积分10
27秒前
AYY完成签到,获得积分10
28秒前
大个应助幸运兔采纳,获得10
28秒前
31秒前
无喱酱发布了新的文献求助10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010682
求助须知:如何正确求助?哪些是违规求助? 3550411
关于积分的说明 11305615
捐赠科研通 3284751
什么是DOI,文献DOI怎么找? 1810846
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499