An ultrafast carrier dynamics system from oxygen vacancies modified SnO2 QDs and Zn2SnO4 heterojunction for deeply photocatalytic oxidation of NO

材料科学 异质结 光催化 氧化还原 选择性 光化学 量子点 氧气 热液循环 吸附 化学工程 解吸 纳米技术 催化作用 光电子学 化学 物理化学 有机化学 冶金 工程类
作者
Yuhan Li,Min Zhang,Bangfu Chen,Ping Ouyang,Youyu Duan,Kangle Lv,Fan Dong
出处
期刊:Journal of Materials Science & Technology [Elsevier BV]
卷期号:165: 85-93 被引量:12
标识
DOI:10.1016/j.jmst.2023.04.043
摘要

Deeply photocatalytic oxidation of NO-to-NO3– holds great promise for alleviating NOx pollution. The major challenge of NO photo-oxidation is the highly in-situ generated NO2 concentration, and the formation of unstable nitrate species causes desorption to release NO2. In this study, SnO2 quantum dots and oxygen vacancies co-modified Zn2SnO4 (ZSO-SnO2-OVs) were prepared by a one-step hydrothermal procedure, the NO photo-oxidation was investigated by a combination of solid experimental and theoretical support. Impressively, spectroscopic measurements indicate that fast carrier dynamics can be achieved due to the electron transfer efficiency of ZSO-SnO2-OVs reaching 99.99%, far outperforming the counterpart and previously reported photocatalysts. During NO oxidation, molecular NO/O2 and H2O are efficiently adsorbed/activated around OVs and SnO2 QDs, respectively. In-situ infrared measurements and calculated electron localized function disclose two main findings: (1) richly electrons enable NO promptly form NO– instead of toxic NO2 or NO+; (2) the generation of stable and undecomposed bidentate NO3– rather than bridging or monodentate one benefits the deep oxidation of NO via shifting reaction sites from O terminals for original ZSO to Sn ones for ZSO-SnO2-OVs. The synergistic action of SnO2 QDs and OVs positively contributes to the NO oxidation performance enhancement (60.6%, 0.1 g of sample) and high selectivity of NO to NO3– (99.2%). Results from this study advance the mechanistic understanding of NO photo-oxidation and its selectivity to NO3– over photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Saturn完成签到,获得积分10
1秒前
QW111发布了新的文献求助10
1秒前
飞快的孱发布了新的文献求助10
1秒前
曲奇发布了新的文献求助30
3秒前
会飞的猪发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
务实的鞯完成签到,获得积分10
6秒前
科研通AI6应助yy采纳,获得10
6秒前
6秒前
要减肥的镜子完成签到,获得积分10
7秒前
8秒前
FlipFlops完成签到,获得积分10
9秒前
9秒前
蓝天应助阿尔文采纳,获得10
9秒前
生动梦松应助科研通管家采纳,获得10
9秒前
不安冷风应助科研通管家采纳,获得10
10秒前
fifteen应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
鸣笛应助科研通管家采纳,获得30
10秒前
ricky应助科研通管家采纳,获得10
10秒前
不安冷风应助科研通管家采纳,获得10
10秒前
卤鸡腿应助科研通管家采纳,获得20
10秒前
Akim应助科研通管家采纳,获得10
11秒前
11秒前
无花果应助科研通管家采纳,获得10
11秒前
不想干活应助科研通管家采纳,获得10
11秒前
不安冷风应助科研通管家采纳,获得10
11秒前
生动梦松应助科研通管家采纳,获得10
11秒前
不想干活应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得30
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548118
求助须知:如何正确求助?哪些是违规求助? 3978952
关于积分的说明 12319973
捐赠科研通 3647538
什么是DOI,文献DOI怎么找? 2008814
邀请新用户注册赠送积分活动 1044272
科研通“疑难数据库(出版商)”最低求助积分说明 932888