清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Forecasting call and chat volumes at online helplines for mental health

电话 心理健康 热线 人员配备 医学 工作量 应用心理学 有用性 公共卫生 互联网隐私 心理学 计算机科学 护理部 电信 社会心理学 精神科 哲学 语言学 操作系统
作者
Tim Rens de Boer,Saskia Mérelle,Sandjai Bhulai,Renske Gilissen,Rob van der Mei
出处
期刊:BMC Public Health [Springer Nature]
卷期号:23 (1)
标识
DOI:10.1186/s12889-023-15887-2
摘要

Abstract Background Each year, many help seekers in need contact health helplines for mental support. It is crucial that they receive support immediately, and that waiting times are minimal. In order to minimize delay, helplines must have adequate staffing levels, especially during peak hours. This has raised the need for means to predict the call and chat volumes ahead of time accurately. Motivated by this, in this paper, we analyze real-life data to develop models for accurately forecasting call volumes, for both phone and chat conversations for online mental health support. Methods This research was conducted on real call and chat data (adequately anonymized) provided by 113 Suicide Prevention (Over ons | 113 Zelfmoordpreventie) (throughout referred to as ‘113’), the online helpline for suicide prevention in the Netherlands. Chat and phone call data were analyzed to better understand the important factors that influence the call arrival process. These factors were then used as input to several Machine Learning (ML) models to forecast the number of call and chat arrivals. Next to that, senior counselors of the helpline completed a web-based questionnaire after each shift to assess their perception of the workload. Results This study has led to several remarkable and key insights. First, the most important factors that determine the call volumes for the helpline are the trend , and weekly and daily cyclic patterns (cycles), while monthly and yearly cycles were found to be non-significant predictors for the number of phone and chat conversations. Second, media events that were included in this study only have limited—and only short-term—impact on the call volumes. Third, so-called (S)ARIMA models are shown to lead to the most accurate prediction in the case of short-term forecasting, while simple linear models work best for long-term forecasting. Fourth, questionnaires filled in by senior counselors show that the experienced workload is mainly correlated to the number of chat conversations compared to phone calls. Conclusion (S)ARIMA models can best be used to forecast the number of daily chats and phone calls with a MAPE of less than 10 in short-term forecasting. These models perform better than other models showing that the number of arrivals depends on historical data. These forecasts can be used as support for planning the number of counselors needed. Furthermore, the questionnaire data show that the workload experienced by senior counselors is more dependent on the number of chat arrivals and less on the number of available agents, showing the value of insight into the arrival process of conversations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忘忧Aquarius完成签到,获得积分10
25秒前
orixero应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
刘刘完成签到 ,获得积分10
49秒前
52秒前
56秒前
谭凯文完成签到 ,获得积分10
1分钟前
烟花应助ll77采纳,获得10
1分钟前
bkagyin应助淡淡的白羊采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
ATK20000完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
烟花应助菜菜1994采纳,获得10
3分钟前
科研通AI5应助沙沙采纳,获得20
3分钟前
3分钟前
菜菜1994发布了新的文献求助10
3分钟前
菜菜1994完成签到,获得积分10
3分钟前
神勇的天问完成签到 ,获得积分10
3分钟前
直率的笑翠完成签到 ,获得积分10
4分钟前
4分钟前
疯狂阅读发布了新的文献求助30
4分钟前
胡真发布了新的文献求助10
4分钟前
4分钟前
沙海沉戈完成签到,获得积分0
4分钟前
疯狂阅读完成签到,获得积分10
4分钟前
4分钟前
清净163完成签到,获得积分10
4分钟前
粗心的飞槐完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
清净126完成签到 ,获得积分10
5分钟前
5分钟前
ll77发布了新的文献求助10
5分钟前
lzxbarry完成签到,获得积分0
6分钟前
ll77完成签到,获得积分10
6分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484484
求助须知:如何正确求助?哪些是违规求助? 3073483
关于积分的说明 9131061
捐赠科研通 2765122
什么是DOI,文献DOI怎么找? 1517634
邀请新用户注册赠送积分活动 702204
科研通“疑难数据库(出版商)”最低求助积分说明 701166