亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models

状态空间 马尔科夫蒙特卡洛 算法 贝叶斯推理 高斯分布 计算机科学 马尔可夫链 状态空间表示 推论 隐马尔可夫模型 可逆跳跃马尔可夫链蒙特卡罗 后验概率 线性模型 数学 贝叶斯概率 人工智能 机器学习 统计 物理 量子力学
作者
Benjamin Cox,Vı́ctor Elvira
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:71: 1922-1937 被引量:8
标识
DOI:10.1109/tsp.2023.3278867
摘要

State-space models (SSMs) are a powerful statistical tool for modelling time-varying systems via a latent state. In these models, the latent state is never directly observed. Instead, a sequence of data points related to the state are obtained. The linear-Gaussian state-space model is widely used, since it allows for exact inference when all model parameters are known, however this is rarely the case. The estimation of these parameters is a very challenging but essential task to perform inference and prediction. In the linear-Gaussian model, the state dynamics are described via a state transition matrix. This model parameter is known to be particularly hard to estimate, since it encodes the between-step relationships of the state elements, which are never observed. In many real-world applications, this transition matrix is sparse since not all state components directly affect all other state components. However, most contemporary parameter estimation methods do not exploit this feature. In this work, we take a fully probabilistic approach and propose SpaRJ, a novel simulation method that obtains sparse samples from the posterior distribution of the transition matrix of a linear-Gaussian state-space model. We exploit the sparsity of the latent space by uncovering its underlying structure. Our proposed method is the first algorithm to provide a fully Bayesian quantification of the sparsity in the model. SpaRJ belongs to the family of reversible jump Markov chain Monte Carlo methods. Our method obtains sparsity via exploring a set of models that exhibit differing sparsity patterns in the transition matrix. The algorithm implements a new set of transition kernels that are specifically tailored to efficiently explore the space of sparse matrices. Moreover, we also design new effective rules to explore transition matrices within the same level of sparsity. This novel methodology has strong theoretical guarantees and efficiently explores sparse subspaces, which unveils the latent structure of the data generating process, thereby enhancing interpretability. The excellent performance of SpaRJ is showcased in a synthetic example with dimension 144 in the parameter space, and in a numerical example with real data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助百里幻竹采纳,获得10
7秒前
Kevin完成签到 ,获得积分10
7秒前
38秒前
馆长应助科研通管家采纳,获得30
45秒前
馆长应助科研通管家采纳,获得30
45秒前
我是老大应助科研通管家采纳,获得20
45秒前
阿甘你好应助科研通管家采纳,获得10
45秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
百里幻竹发布了新的文献求助10
1分钟前
1分钟前
dyuguo3完成签到 ,获得积分10
1分钟前
jun完成签到,获得积分10
2分钟前
wang完成签到,获得积分10
2分钟前
小二郎应助科研通管家采纳,获得50
2分钟前
馆长应助科研通管家采纳,获得30
2分钟前
2分钟前
Harrison发布了新的文献求助10
3分钟前
充电宝应助Harrison采纳,获得30
3分钟前
3分钟前
Gemh发布了新的文献求助30
3分钟前
3分钟前
LWT发布了新的文献求助10
3分钟前
闫伊森完成签到,获得积分10
3分钟前
Yini完成签到,获得积分0
3分钟前
Ashao完成签到 ,获得积分10
3分钟前
3分钟前
斯文败类应助Gemh采纳,获得10
3分钟前
周冯雪完成签到 ,获得积分10
3分钟前
4分钟前
LWT完成签到,获得积分10
4分钟前
Gemh发布了新的文献求助10
4分钟前
mathmotive完成签到,获得积分10
4分钟前
souther完成签到,获得积分0
4分钟前
4分钟前
哈哈哈哈完成签到,获得积分10
4分钟前
高贵的冰旋完成签到 ,获得积分10
5分钟前
SiriWang77完成签到,获得积分10
5分钟前
SiriWang77发布了新的文献求助10
6分钟前
hugo完成签到,获得积分20
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910068
求助须知:如何正确求助?哪些是违规求助? 4186087
关于积分的说明 12999029
捐赠科研通 3953339
什么是DOI,文献DOI怎么找? 2167876
邀请新用户注册赠送积分活动 1186328
关于科研通互助平台的介绍 1093381