亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models

状态空间 马尔科夫蒙特卡洛 算法 贝叶斯推理 高斯分布 计算机科学 马尔可夫链 状态空间表示 推论 隐马尔可夫模型 可逆跳跃马尔可夫链蒙特卡罗 后验概率 线性模型 数学 贝叶斯概率 人工智能 机器学习 统计 物理 量子力学
作者
Benjamin Cox,Vı́ctor Elvira
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:71: 1922-1937 被引量:8
标识
DOI:10.1109/tsp.2023.3278867
摘要

State-space models (SSMs) are a powerful statistical tool for modelling time-varying systems via a latent state. In these models, the latent state is never directly observed. Instead, a sequence of data points related to the state are obtained. The linear-Gaussian state-space model is widely used, since it allows for exact inference when all model parameters are known, however this is rarely the case. The estimation of these parameters is a very challenging but essential task to perform inference and prediction. In the linear-Gaussian model, the state dynamics are described via a state transition matrix. This model parameter is known to be particularly hard to estimate, since it encodes the between-step relationships of the state elements, which are never observed. In many real-world applications, this transition matrix is sparse since not all state components directly affect all other state components. However, most contemporary parameter estimation methods do not exploit this feature. In this work, we take a fully probabilistic approach and propose SpaRJ, a novel simulation method that obtains sparse samples from the posterior distribution of the transition matrix of a linear-Gaussian state-space model. We exploit the sparsity of the latent space by uncovering its underlying structure. Our proposed method is the first algorithm to provide a fully Bayesian quantification of the sparsity in the model. SpaRJ belongs to the family of reversible jump Markov chain Monte Carlo methods. Our method obtains sparsity via exploring a set of models that exhibit differing sparsity patterns in the transition matrix. The algorithm implements a new set of transition kernels that are specifically tailored to efficiently explore the space of sparse matrices. Moreover, we also design new effective rules to explore transition matrices within the same level of sparsity. This novel methodology has strong theoretical guarantees and efficiently explores sparse subspaces, which unveils the latent structure of the data generating process, thereby enhancing interpretability. The excellent performance of SpaRJ is showcased in a synthetic example with dimension 144 in the parameter space, and in a numerical example with real data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shihuan完成签到,获得积分10
1秒前
wrl2023完成签到,获得积分10
33秒前
GingerF应助科研通管家采纳,获得50
37秒前
我是老大应助科研通管家采纳,获得10
37秒前
Allen完成签到,获得积分20
57秒前
濮阳灵竹完成签到,获得积分10
1分钟前
英俊的铭应助红娘采纳,获得10
1分钟前
1分钟前
清脆的飞丹完成签到,获得积分10
1分钟前
2分钟前
2分钟前
Allen发布了新的文献求助30
2分钟前
红娘发布了新的文献求助10
2分钟前
yingwang完成签到 ,获得积分10
2分钟前
2分钟前
红娘完成签到,获得积分10
2分钟前
2分钟前
飞天大南瓜完成签到,获得积分10
2分钟前
笑点低的斑马完成签到,获得积分10
2分钟前
橙子完成签到 ,获得积分10
3分钟前
铭铭铭完成签到,获得积分10
3分钟前
科研通AI6应助Allen采纳,获得10
3分钟前
共享精神应助起名太难了采纳,获得10
3分钟前
3分钟前
3分钟前
taster发布了新的文献求助10
4分钟前
4分钟前
春秋发布了新的文献求助10
4分钟前
搜集达人应助taster采纳,获得10
4分钟前
4分钟前
春秋完成签到,获得积分20
4分钟前
PAIDAXXXX完成签到,获得积分10
4分钟前
困困发布了新的文献求助10
4分钟前
困困完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
顾矜应助sanner采纳,获得10
5分钟前
情怀应助Alay采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232790
求助须知:如何正确求助?哪些是违规求助? 4401986
关于积分的说明 13699526
捐赠科研通 4268459
什么是DOI,文献DOI怎么找? 2342582
邀请新用户注册赠送积分活动 1339590
关于科研通互助平台的介绍 1296365