Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models

状态空间 马尔科夫蒙特卡洛 算法 贝叶斯推理 高斯分布 计算机科学 马尔可夫链 状态空间表示 推论 隐马尔可夫模型 可逆跳跃马尔可夫链蒙特卡罗 后验概率 线性模型 数学 贝叶斯概率 人工智能 机器学习 统计 物理 量子力学
作者
Benjamin Cox,Vı́ctor Elvira
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:71: 1922-1937 被引量:8
标识
DOI:10.1109/tsp.2023.3278867
摘要

State-space models (SSMs) are a powerful statistical tool for modelling time-varying systems via a latent state. In these models, the latent state is never directly observed. Instead, a sequence of data points related to the state are obtained. The linear-Gaussian state-space model is widely used, since it allows for exact inference when all model parameters are known, however this is rarely the case. The estimation of these parameters is a very challenging but essential task to perform inference and prediction. In the linear-Gaussian model, the state dynamics are described via a state transition matrix. This model parameter is known to be particularly hard to estimate, since it encodes the between-step relationships of the state elements, which are never observed. In many real-world applications, this transition matrix is sparse since not all state components directly affect all other state components. However, most contemporary parameter estimation methods do not exploit this feature. In this work, we take a fully probabilistic approach and propose SpaRJ, a novel simulation method that obtains sparse samples from the posterior distribution of the transition matrix of a linear-Gaussian state-space model. We exploit the sparsity of the latent space by uncovering its underlying structure. Our proposed method is the first algorithm to provide a fully Bayesian quantification of the sparsity in the model. SpaRJ belongs to the family of reversible jump Markov chain Monte Carlo methods. Our method obtains sparsity via exploring a set of models that exhibit differing sparsity patterns in the transition matrix. The algorithm implements a new set of transition kernels that are specifically tailored to efficiently explore the space of sparse matrices. Moreover, we also design new effective rules to explore transition matrices within the same level of sparsity. This novel methodology has strong theoretical guarantees and efficiently explores sparse subspaces, which unveils the latent structure of the data generating process, thereby enhancing interpretability. The excellent performance of SpaRJ is showcased in a synthetic example with dimension 144 in the parameter space, and in a numerical example with real data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rover完成签到 ,获得积分10
刚刚
1秒前
安详凡发布了新的文献求助10
1秒前
1秒前
等风来完成签到 ,获得积分10
2秒前
AX完成签到,获得积分10
3秒前
牛牛眉目发布了新的文献求助10
4秒前
又声完成签到,获得积分10
4秒前
6秒前
HelenZ发布了新的文献求助10
6秒前
7秒前
阿包完成签到 ,获得积分10
8秒前
Adi完成签到,获得积分10
10秒前
顾矜应助科研进化中采纳,获得10
13秒前
难过盼海完成签到,获得积分10
14秒前
CipherSage应助ZZZ采纳,获得10
15秒前
南桑完成签到 ,获得积分10
16秒前
16秒前
上官若男应助schilling采纳,获得10
18秒前
19秒前
久违发布了新的文献求助10
19秒前
xlh完成签到 ,获得积分10
26秒前
gy完成签到 ,获得积分10
27秒前
28秒前
共享精神应助科研鸟采纳,获得30
28秒前
丹丹子完成签到 ,获得积分10
29秒前
Yewpanda07完成签到,获得积分10
29秒前
31秒前
小绵羊发布了新的文献求助10
31秒前
31秒前
33秒前
33秒前
爆米花应助科研探索者采纳,获得10
33秒前
schilling发布了新的文献求助10
34秒前
积极的尔岚完成签到 ,获得积分10
36秒前
李华发布了新的文献求助10
37秒前
喵喵发布了新的文献求助10
37秒前
38秒前
39秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966285
求助须知:如何正确求助?哪些是违规求助? 3511697
关于积分的说明 11159270
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874354
科研通“疑难数据库(出版商)”最低求助积分说明 804351