已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models

状态空间 马尔科夫蒙特卡洛 算法 贝叶斯推理 高斯分布 计算机科学 马尔可夫链 状态空间表示 推论 隐马尔可夫模型 可逆跳跃马尔可夫链蒙特卡罗 后验概率 线性模型 数学 贝叶斯概率 人工智能 机器学习 统计 物理 量子力学
作者
Benjamin Cox,Vı́ctor Elvira
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:71: 1922-1937 被引量:8
标识
DOI:10.1109/tsp.2023.3278867
摘要

State-space models (SSMs) are a powerful statistical tool for modelling time-varying systems via a latent state. In these models, the latent state is never directly observed. Instead, a sequence of data points related to the state are obtained. The linear-Gaussian state-space model is widely used, since it allows for exact inference when all model parameters are known, however this is rarely the case. The estimation of these parameters is a very challenging but essential task to perform inference and prediction. In the linear-Gaussian model, the state dynamics are described via a state transition matrix. This model parameter is known to be particularly hard to estimate, since it encodes the between-step relationships of the state elements, which are never observed. In many real-world applications, this transition matrix is sparse since not all state components directly affect all other state components. However, most contemporary parameter estimation methods do not exploit this feature. In this work, we take a fully probabilistic approach and propose SpaRJ, a novel simulation method that obtains sparse samples from the posterior distribution of the transition matrix of a linear-Gaussian state-space model. We exploit the sparsity of the latent space by uncovering its underlying structure. Our proposed method is the first algorithm to provide a fully Bayesian quantification of the sparsity in the model. SpaRJ belongs to the family of reversible jump Markov chain Monte Carlo methods. Our method obtains sparsity via exploring a set of models that exhibit differing sparsity patterns in the transition matrix. The algorithm implements a new set of transition kernels that are specifically tailored to efficiently explore the space of sparse matrices. Moreover, we also design new effective rules to explore transition matrices within the same level of sparsity. This novel methodology has strong theoretical guarantees and efficiently explores sparse subspaces, which unveils the latent structure of the data generating process, thereby enhancing interpretability. The excellent performance of SpaRJ is showcased in a synthetic example with dimension 144 in the parameter space, and in a numerical example with real data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香草哥发布了新的文献求助10
1秒前
2秒前
TomasLiu完成签到,获得积分10
2秒前
3秒前
4秒前
SciGPT应助ytx采纳,获得10
5秒前
Jasper应助灵巧大地采纳,获得10
6秒前
今后应助危机的安容采纳,获得10
6秒前
研友_8R3XdL发布了新的文献求助10
8秒前
windy发布了新的文献求助10
8秒前
所所应助Dora采纳,获得10
8秒前
YUKI发布了新的文献求助10
8秒前
9秒前
John完成签到 ,获得积分10
9秒前
yym发布了新的文献求助10
11秒前
11秒前
12秒前
肉松小贝完成签到 ,获得积分10
13秒前
赵文龙完成签到,获得积分10
13秒前
大林小隐发布了新的文献求助30
15秒前
Y1234应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
wanci应助科研通管家采纳,获得10
16秒前
16秒前
乐乐应助赵文龙采纳,获得30
18秒前
18秒前
眯眯眼的衬衫应助Hyde采纳,获得10
18秒前
大林小隐完成签到,获得积分10
21秒前
Dora发布了新的文献求助10
22秒前
x-17发布了新的文献求助20
22秒前
id完成签到,获得积分10
23秒前
24秒前
24秒前
酷波er应助阿里采纳,获得10
25秒前
嘤嘤嘤发布了新的文献求助10
26秒前
26秒前
wzq发布了新的文献求助20
27秒前
希望天下0贩的0应助Sevi采纳,获得10
27秒前
希望天下0贩的0应助Sevi采纳,获得10
27秒前
闹闹发布了新的文献求助10
28秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491087
求助须知:如何正确求助?哪些是违规求助? 3077779
关于积分的说明 9150236
捐赠科研通 2770180
什么是DOI,文献DOI怎么找? 1520177
邀请新用户注册赠送积分活动 704504
科研通“疑难数据库(出版商)”最低求助积分说明 702196