支链淀粉
淀粉
直链淀粉
材料科学
马铃薯淀粉
化学工程
极限抗拉强度
食品科学
铸造
动态力学分析
变性淀粉
化学
聚合物
复合材料
工程类
作者
Laura Boetje,Xiaohong Lan,Jur van Dijken,Albert J. J. Woortman,Thijs Popken,Michael Polhuis,Katja Loos
标识
DOI:10.1016/j.carbpol.2023.121043
摘要
Oleic acid and 10-undecenoic acid were used to esterify corn, tapioca, potato and a waxy potato starch, with a maximum degree of substitution of 2.4 and 1.9 respectively. The thermal and mechanical properties were investigated as a function of the amylopectin content and Mw of starch, and by the fatty acid type. All starch esters had an improved degradation temperature regardless of their botanical origin. While the Tg did increase with increasing amylopectin content and Mw, it decreased with increasing fatty acid chain length. Moreover, films with different optical appearances were obtained by varying the casting temperature. SEM and polarized light microscopy showed that films cast at 20 °C had porous open structures with internal stress, which was absent when cast at higher temperatures. Tensile test measurements revealed that films had a higher Young's modulus when containing starch with a higher Mw and amylopectin content. Besides that, starch oleate films were more ductile than starch 10-undecenoate films. In addition, all films were resistant to water at least up to one month, while some light-induced crosslinking took place. Finally, starch oleate films showed antibacterial properties against Escherichia coli, whereas native starch and starch 10-undecenoate did not.
科研通智能强力驱动
Strongly Powered by AbleSci AI