Dual-TBNet: Improving the Robustness of Speech Features via Dual-Transformer-BiLSTM for Speech Emotion Recognition

计算机科学 稳健性(进化) 语音识别 过度拟合 人工智能 模式识别(心理学) 保险丝(电气) 隐马尔可夫模型 变压器 卷积神经网络 人工神经网络 基因 电气工程 物理 工程类 量子力学 生物化学 电压 化学
作者
Zheng Liu,Xin Kang,Fuji Ren
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2193-2203 被引量:20
标识
DOI:10.1109/taslp.2023.3282092
摘要

Speech emotion recognition has always been one of the topics that have attracted a lot of attention from many researchers. In traditional feature fusion methods, the speech features used only come from the data set, and the weak robustness of features can easily lead to overfitting of the model. In addition, these methods often use simple concatenation to fuse features, which will cause the loss of speech information. In this paper, to solve the above problems and improve the recognition accuracy, we utilize self-supervised learning to enhance the robustness of speech features and propose a feature fusion model(Dual-TBNet) that consists of two 1D convolutional layers, two Transformer modules and two bidirectional long short-term memory (BiLSTM) modules. Our model uses 1D convolution to take features of different segment lengths and dimension sizes as input, uses the attention mechanism to capture the correspondence between the two features, and uses the bidirectional time series module to enhance the contextual information of the fused features. We designed a total of four fusion models to fuse five pre-trained features and acoustic features. In the comparison experiments, the Dual-TBNet model achieved a recognition accuracy and F1 score of 95.7% and 95.8% on the CASIA dataset, 66.7% and 65.6% on the eNTERFACE05 dataset, 64.8% and 64.9% on the IEMOCAP dataset, 84.1% and 84.3% on the EMO-DB dataset and 83.3% and 82.1% on the SAVEE dataset. The Dual-TBNet model effectively fuses acoustic features of different lengths and dimensions with pre-trained features, enhancing the robustness of the features, and achieved the best performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如意元霜关注了科研通微信公众号
2秒前
2秒前
5秒前
DJsky123发布了新的文献求助10
5秒前
8秒前
11秒前
赵卫星发布了新的文献求助10
12秒前
阿尔宙斯发布了新的文献求助10
16秒前
17秒前
万能图书馆应助赵卫星采纳,获得10
18秒前
葵花发布了新的文献求助10
21秒前
23秒前
大聪明完成签到,获得积分10
24秒前
F_ken完成签到,获得积分10
26秒前
张逍遥完成签到,获得积分10
27秒前
27秒前
28秒前
29秒前
煜清清完成签到 ,获得积分10
29秒前
29秒前
zhangscience完成签到,获得积分20
30秒前
歼击机88完成签到,获得积分10
30秒前
77发布了新的文献求助10
32秒前
张逍遥发布了新的文献求助10
33秒前
33秒前
隐形曼青应助葵花采纳,获得10
34秒前
朝朝暮夕完成签到 ,获得积分10
34秒前
35秒前
35秒前
笑点低涵柳完成签到,获得积分10
35秒前
orixero应助如意元霜采纳,获得10
36秒前
无心客应助科研通管家采纳,获得10
37秒前
汉堡包应助科研通管家采纳,获得10
37秒前
乐乐应助天真的冰蝶采纳,获得10
37秒前
乐乐应助科研通管家采纳,获得10
37秒前
充电宝应助科研通管家采纳,获得10
37秒前
怜南完成签到,获得积分10
37秒前
搜集达人应助科研通管家采纳,获得10
37秒前
852应助科研通管家采纳,获得10
38秒前
Jasper应助科研通管家采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298643
求助须知:如何正确求助?哪些是违规求助? 4447181
关于积分的说明 13841710
捐赠科研通 4332612
什么是DOI,文献DOI怎么找? 2378257
邀请新用户注册赠送积分活动 1373533
关于科研通互助平台的介绍 1339134