Dual-TBNet: Improving the Robustness of Speech Features via Dual-Transformer-BiLSTM for Speech Emotion Recognition

计算机科学 稳健性(进化) 语音识别 过度拟合 人工智能 模式识别(心理学) 保险丝(电气) 隐马尔可夫模型 变压器 卷积神经网络 人工神经网络 生物化学 化学 物理 量子力学 电压 电气工程 基因 工程类
作者
Zheng Liu,Xin Kang,Fuji Ren
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2193-2203 被引量:20
标识
DOI:10.1109/taslp.2023.3282092
摘要

Speech emotion recognition has always been one of the topics that have attracted a lot of attention from many researchers. In traditional feature fusion methods, the speech features used only come from the data set, and the weak robustness of features can easily lead to overfitting of the model. In addition, these methods often use simple concatenation to fuse features, which will cause the loss of speech information. In this paper, to solve the above problems and improve the recognition accuracy, we utilize self-supervised learning to enhance the robustness of speech features and propose a feature fusion model(Dual-TBNet) that consists of two 1D convolutional layers, two Transformer modules and two bidirectional long short-term memory (BiLSTM) modules. Our model uses 1D convolution to take features of different segment lengths and dimension sizes as input, uses the attention mechanism to capture the correspondence between the two features, and uses the bidirectional time series module to enhance the contextual information of the fused features. We designed a total of four fusion models to fuse five pre-trained features and acoustic features. In the comparison experiments, the Dual-TBNet model achieved a recognition accuracy and F1 score of 95.7% and 95.8% on the CASIA dataset, 66.7% and 65.6% on the eNTERFACE05 dataset, 64.8% and 64.9% on the IEMOCAP dataset, 84.1% and 84.3% on the EMO-DB dataset and 83.3% and 82.1% on the SAVEE dataset. The Dual-TBNet model effectively fuses acoustic features of different lengths and dimensions with pre-trained features, enhancing the robustness of the features, and achieved the best performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
茁茁发布了新的文献求助10
1秒前
likeit完成签到,获得积分20
2秒前
2秒前
陶远望完成签到,获得积分0
2秒前
大方芾发布了新的文献求助10
2秒前
河中医朵花完成签到,获得积分10
2秒前
lee完成签到,获得积分10
3秒前
艾雪完成签到,获得积分10
3秒前
大成子完成签到,获得积分10
4秒前
Mic应助刘运丽采纳,获得10
4秒前
黎黎发布了新的文献求助10
4秒前
4秒前
酷波er应助布丁圆团采纳,获得10
4秒前
4秒前
凌兰完成签到 ,获得积分10
5秒前
六道完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
DD完成签到,获得积分10
6秒前
Jasper应助VV采纳,获得10
6秒前
维生素完成签到,获得积分10
6秒前
xiaoju发布了新的文献求助10
6秒前
李洪星完成签到 ,获得积分10
7秒前
chenqinqin发布了新的文献求助10
7秒前
打打应助舒适一笑采纳,获得10
7秒前
宋慧茹完成签到,获得积分10
7秒前
青衣完成签到,获得积分10
8秒前
大模型应助李可乐采纳,获得10
8秒前
yiyi037118完成签到,获得积分10
9秒前
9秒前
bkagyin应助清晾油采纳,获得10
10秒前
wx完成签到,获得积分10
10秒前
Lament完成签到,获得积分10
10秒前
方俊驰发布了新的文献求助10
10秒前
Jasper应助别管我采纳,获得10
10秒前
11秒前
123ywh发布了新的文献求助10
12秒前
将个烂就完成签到,获得积分10
12秒前
胜利主义完成签到,获得积分10
12秒前
芳芳完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977