Dual-TBNet: Improving the Robustness of Speech Features via Dual-Transformer-BiLSTM for Speech Emotion Recognition

计算机科学 稳健性(进化) 语音识别 过度拟合 人工智能 模式识别(心理学) 保险丝(电气) 隐马尔可夫模型 变压器 卷积神经网络 人工神经网络 生物化学 化学 物理 量子力学 电压 电气工程 基因 工程类
作者
Zheng Liu,Xin Kang,Fuji Ren
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2193-2203
标识
DOI:10.1109/taslp.2023.3282092
摘要

Speech emotion recognition has always been one of the topics that have attracted a lot of attention from many researchers. In traditional feature fusion methods, the speech features used only come from the data set, and the weak robustness of features can easily lead to overfitting of the model. In addition, these methods often use simple concatenation to fuse features, which will cause the loss of speech information. In this paper, to solve the above problems and improve the recognition accuracy, we utilize self-supervised learning to enhance the robustness of speech features and propose a feature fusion model(Dual-TBNet) that consists of two 1D convolutional layers, two Transformer modules and two bidirectional long short-term memory (BiLSTM) modules. Our model uses 1D convolution to take features of different segment lengths and dimension sizes as input, uses the attention mechanism to capture the correspondence between the two features, and uses the bidirectional time series module to enhance the contextual information of the fused features. We designed a total of four fusion models to fuse five pre-trained features and acoustic features. In the comparison experiments, the Dual-TBNet model achieved a recognition accuracy and F1 score of 95.7% and 95.8% on the CASIA dataset, 66.7% and 65.6% on the eNTERFACE05 dataset, 64.8% and 64.9% on the IEMOCAP dataset, 84.1% and 84.3% on the EMO-DB dataset and 83.3% and 82.1% on the SAVEE dataset. The Dual-TBNet model effectively fuses acoustic features of different lengths and dimensions with pre-trained features, enhancing the robustness of the features, and achieved the best performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你好啊发布了新的文献求助10
1秒前
2秒前
顺利南珍发布了新的文献求助10
2秒前
3秒前
5秒前
5秒前
飞逸兴于管弦完成签到,获得积分10
6秒前
图图完成签到 ,获得积分10
7秒前
小霞完成签到 ,获得积分10
10秒前
申思发布了新的文献求助30
10秒前
Gena完成签到,获得积分20
11秒前
tong发布了新的文献求助10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
南屿汐月发布了新的文献求助10
11秒前
科研小白发布了新的文献求助10
12秒前
StevenZhao发布了新的文献求助10
13秒前
霸气冰露完成签到,获得积分10
15秒前
tao完成签到 ,获得积分10
16秒前
莫娜完成签到,获得积分10
16秒前
小冯完成签到,获得积分10
19秒前
无情的匪完成签到 ,获得积分10
19秒前
CipherSage应助默默访风采纳,获得10
21秒前
22秒前
酷波er应助你好啊采纳,获得10
23秒前
Zeger116完成签到,获得积分10
23秒前
25秒前
苹果煎饼完成签到,获得积分10
27秒前
甜甜圈发布了新的文献求助10
29秒前
冷艳的火龙果完成签到,获得积分10
29秒前
壮观的静芙完成签到 ,获得积分10
30秒前
31秒前
欢呼山雁完成签到,获得积分10
32秒前
34秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137664
求助须知:如何正确求助?哪些是违规求助? 2788576
关于积分的说明 7787679
捐赠科研通 2444950
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023