Computational insights into the cross-talk between medin and Aβ: implications for age-related vascular risk factors in Alzheimer’s disease

纤维 化学 蛋白质聚集 生物物理学 生物 生物化学
作者
Fengjuan Huang,Xinjie Fan,Ying Wang,Yu Zou,Jiangfang Lian,Chuang Wang,Feng Ding,Yunxiang Sun
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (2) 被引量:3
标识
DOI:10.1093/bib/bbad526
摘要

Abstract The aggregation of medin forming aortic medial amyloid is linked to arterial wall degeneration and cerebrovascular dysfunction. Elevated levels of arteriolar medin are correlated with an increased presence of vascular amyloid-β (Aβ) aggregates, a hallmark of Alzheimer’s disease (AD) and vascular dementia. The cross-interaction between medin and Aβ results in the formation of heterologous fibrils through co-aggregation and cross-seeding processes both in vitro and in vivo. However, a comprehensive molecular understanding of the cross-interaction between medin and Aβ—two intrinsically disordered proteins—is critically lacking. Here, we employed atomistic discrete molecular dynamics simulations to systematically investigate the self-association, co-aggregation and also the phenomenon of cross-seeding between these two proteins. Our results demonstrated that both Aβ and medin were aggregation prone and their mixture tended to form β-sheet-rich hetero-aggregates. The formation of Aβ-medin hetero-aggregates did not hinder Aβ and medin from recruiting additional Aβ and medin peptides to grow into larger β-sheet-rich aggregates. The β-barrel oligomer intermediates observed in the self-aggregations of Aβ and medin were also present during their co-aggregation. In cross-seeding simulations, preformed Aβ fibrils could recruit isolated medin monomers to form elongated β-sheets. Overall, our comprehensive simulations suggested that the cross-interaction between Aβ and medin may contribute to their pathological aggregation, given the inherent amyloidogenic tendencies of both medin and Aβ. Targeting medin, therefore, could offer a novel therapeutic approach to preserving brain function during aging and AD by improving vascular health.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助辛勤的惊蛰采纳,获得10
刚刚
科研通AI6应助DUN采纳,获得30
刚刚
12完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
生煎包大侠完成签到 ,获得积分10
2秒前
zzkkl发布了新的文献求助10
2秒前
乔青完成签到,获得积分10
2秒前
算命先生完成签到,获得积分10
3秒前
3秒前
4秒前
Daybreak发布了新的文献求助10
4秒前
4秒前
gongyh完成签到,获得积分10
5秒前
BowieHuang应助badada采纳,获得10
6秒前
6秒前
7秒前
7秒前
wbj完成签到,获得积分10
7秒前
周小凡发布了新的文献求助20
8秒前
高硕发布了新的文献求助10
8秒前
上官若男应助嗯嗯采纳,获得10
8秒前
李爱国应助PhD_Essence采纳,获得10
9秒前
kxm发布了新的文献求助10
9秒前
momo完成签到,获得积分10
9秒前
略微妙蛙发布了新的文献求助10
10秒前
10秒前
科研通AI6应助qian03采纳,获得10
10秒前
10秒前
hhhhh发布了新的文献求助10
11秒前
11秒前
奚康发布了新的文献求助10
12秒前
一个西藏发布了新的文献求助10
13秒前
HJJHJH发布了新的文献求助30
13秒前
安静的冰蓝完成签到 ,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
ljy完成签到,获得积分10
14秒前
科研通AI6应助霸气靖雁采纳,获得10
15秒前
库洛洛发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660573
求助须知:如何正确求助?哪些是违规求助? 4834676
关于积分的说明 15091117
捐赠科研通 4819141
什么是DOI,文献DOI怎么找? 2579102
邀请新用户注册赠送积分活动 1533630
关于科研通互助平台的介绍 1492396