亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-modal brain tumor segmentation via conditional synthesis with Fourier domain adaptation

分割 计算机科学 人工智能 合成数据 模式识别(心理学) 图像分割 人工神经网络 基本事实 计算机视觉
作者
Yasmina Al Khalil,Aymen Ayaz,Cristian Lorenz,Jürgen Weese,Josien P. W. Pluim,Marcel Breeuwer
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:112: 102332-102332 被引量:2
标识
DOI:10.1016/j.compmedimag.2024.102332
摘要

Accurate brain tumor segmentation is critical for diagnosis and treatment planning, whereby multi-modal magnetic resonance imaging (MRI) is typically used for analysis. However, obtaining all required sequences and expertly labeled data for training is challenging and can result in decreased quality of segmentation models developed through automated algorithms. In this work, we examine the possibility of employing a conditional generative adversarial network (GAN) approach for synthesizing multi-modal images to train deep learning-based neural networks aimed at high-grade glioma (HGG) segmentation. The proposed GAN is conditioned on auxiliary brain tissue and tumor segmentation masks, allowing us to attain better accuracy and control of tissue appearance during synthesis. To reduce the domain shift between synthetic and real MR images, we additionally adapt the low-frequency Fourier space components of synthetic data, reflecting the style of the image, to those of real data. We demonstrate the impact of Fourier domain adaptation (FDA) on the training of 3D segmentation networks and attain significant improvements in both the segmentation performance and prediction confidence. Similar outcomes are seen when such data is used as a training augmentation alongside the available real images. In fact, experiments on the BraTS2020 dataset reveal that models trained solely with synthetic data exhibit an improvement of up to 4% in Dice score when using FDA, while training with both real and FDA-processed synthetic data through augmentation results in an improvement of up to 5% in Dice compared to using real data alone. This study highlights the importance of considering image frequency in generative approaches for medical image synthesis and offers a promising approach to address data scarcity in medical imaging segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yangbo666发布了新的文献求助10
4秒前
24秒前
上官若男应助三口一头猪采纳,获得10
29秒前
李健应助谵妄姿态采纳,获得30
32秒前
量子星尘发布了新的文献求助10
33秒前
51秒前
54秒前
深情安青应助yangbo666采纳,获得10
1分钟前
1分钟前
幽默赛君完成签到 ,获得积分10
1分钟前
1分钟前
jueshadi发布了新的文献求助10
1分钟前
BINBIN完成签到 ,获得积分10
1分钟前
jueshadi完成签到 ,获得积分10
1分钟前
fdj3121发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
KachiRyoji应助风轻萤采纳,获得10
3分钟前
4分钟前
yangbo666发布了新的文献求助10
4分钟前
luluu完成签到,获得积分10
4分钟前
我是老大应助三口一头猪采纳,获得10
4分钟前
4分钟前
yangbohhan完成签到,获得积分10
4分钟前
yangbohhan发布了新的文献求助10
4分钟前
科研通AI5应助yangbohhan采纳,获得10
5分钟前
5分钟前
Nill发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
docyuchi发布了新的文献求助10
5分钟前
Orange应助docyuchi采纳,获得10
5分钟前
docyuchi完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611550
求助须知:如何正确求助?哪些是违规求助? 4017019
关于积分的说明 12435975
捐赠科研通 3698914
什么是DOI,文献DOI怎么找? 2039848
邀请新用户注册赠送积分活动 1072626
科研通“疑难数据库(出版商)”最低求助积分说明 956329