Multi-modal brain tumor segmentation via conditional synthesis with Fourier domain adaptation

分割 计算机科学 人工智能 合成数据 模式识别(心理学) 图像分割 人工神经网络 基本事实 计算机视觉
作者
Yasmina Al Khalil,Aymen Ayaz,Cristian Lorenz,Jürgen Weese,Josien P. W. Pluim,Marcel Breeuwer
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:112: 102332-102332 被引量:2
标识
DOI:10.1016/j.compmedimag.2024.102332
摘要

Accurate brain tumor segmentation is critical for diagnosis and treatment planning, whereby multi-modal magnetic resonance imaging (MRI) is typically used for analysis. However, obtaining all required sequences and expertly labeled data for training is challenging and can result in decreased quality of segmentation models developed through automated algorithms. In this work, we examine the possibility of employing a conditional generative adversarial network (GAN) approach for synthesizing multi-modal images to train deep learning-based neural networks aimed at high-grade glioma (HGG) segmentation. The proposed GAN is conditioned on auxiliary brain tissue and tumor segmentation masks, allowing us to attain better accuracy and control of tissue appearance during synthesis. To reduce the domain shift between synthetic and real MR images, we additionally adapt the low-frequency Fourier space components of synthetic data, reflecting the style of the image, to those of real data. We demonstrate the impact of Fourier domain adaptation (FDA) on the training of 3D segmentation networks and attain significant improvements in both the segmentation performance and prediction confidence. Similar outcomes are seen when such data is used as a training augmentation alongside the available real images. In fact, experiments on the BraTS2020 dataset reveal that models trained solely with synthetic data exhibit an improvement of up to 4% in Dice score when using FDA, while training with both real and FDA-processed synthetic data through augmentation results in an improvement of up to 5% in Dice compared to using real data alone. This study highlights the importance of considering image frequency in generative approaches for medical image synthesis and offers a promising approach to address data scarcity in medical imaging segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
克姑美完成签到 ,获得积分10
3秒前
pangao完成签到,获得积分10
3秒前
ysssbq完成签到,获得积分10
5秒前
6秒前
上好佳完成签到 ,获得积分10
6秒前
大模型应助Yeong采纳,获得10
7秒前
量子星尘发布了新的文献求助30
7秒前
8秒前
123完成签到,获得积分10
8秒前
谢陈完成签到 ,获得积分10
9秒前
lilili完成签到,获得积分10
10秒前
11秒前
xiaoying发布了新的文献求助10
11秒前
SciGPT应助Eric_Liuzy采纳,获得10
12秒前
liu完成签到 ,获得积分10
12秒前
qixiaoqi发布了新的文献求助10
13秒前
14秒前
A溶大美噶发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
17秒前
18秒前
kevin发布了新的文献求助10
18秒前
满意的初南完成签到 ,获得积分10
19秒前
橙橙橙发布了新的文献求助10
19秒前
万能图书馆应助EVEN采纳,获得10
19秒前
19秒前
Yeong发布了新的文献求助10
20秒前
范先生发布了新的文献求助10
21秒前
disciple完成签到,获得积分10
22秒前
沉默凌寒完成签到,获得积分10
22秒前
cc完成签到,获得积分10
22秒前
23秒前
糖豆完成签到,获得积分10
23秒前
smottom完成签到,获得积分0
24秒前
贰鸟完成签到,获得积分0
24秒前
24秒前
火山蜗牛发布了新的文献求助10
25秒前
腿毛没啦完成签到,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048