Multi-modal brain tumor segmentation via conditional synthesis with Fourier domain adaptation

分割 计算机科学 人工智能 合成数据 模式识别(心理学) 图像分割 人工神经网络 基本事实 计算机视觉
作者
Yasmina Al Khalil,Aymen Ayaz,Cristian Lorenz,Jürgen Weese,Josien P. W. Pluim,Marcel Breeuwer
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:112: 102332-102332 被引量:2
标识
DOI:10.1016/j.compmedimag.2024.102332
摘要

Accurate brain tumor segmentation is critical for diagnosis and treatment planning, whereby multi-modal magnetic resonance imaging (MRI) is typically used for analysis. However, obtaining all required sequences and expertly labeled data for training is challenging and can result in decreased quality of segmentation models developed through automated algorithms. In this work, we examine the possibility of employing a conditional generative adversarial network (GAN) approach for synthesizing multi-modal images to train deep learning-based neural networks aimed at high-grade glioma (HGG) segmentation. The proposed GAN is conditioned on auxiliary brain tissue and tumor segmentation masks, allowing us to attain better accuracy and control of tissue appearance during synthesis. To reduce the domain shift between synthetic and real MR images, we additionally adapt the low-frequency Fourier space components of synthetic data, reflecting the style of the image, to those of real data. We demonstrate the impact of Fourier domain adaptation (FDA) on the training of 3D segmentation networks and attain significant improvements in both the segmentation performance and prediction confidence. Similar outcomes are seen when such data is used as a training augmentation alongside the available real images. In fact, experiments on the BraTS2020 dataset reveal that models trained solely with synthetic data exhibit an improvement of up to 4% in Dice score when using FDA, while training with both real and FDA-processed synthetic data through augmentation results in an improvement of up to 5% in Dice compared to using real data alone. This study highlights the importance of considering image frequency in generative approaches for medical image synthesis and offers a promising approach to address data scarcity in medical imaging segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu完成签到,获得积分10
刚刚
搞怪的白竹完成签到,获得积分10
刚刚
浮游应助守望者采纳,获得10
1秒前
研友_J8DXp8应助浅色凉生采纳,获得10
1秒前
1秒前
2秒前
2秒前
3秒前
4秒前
okay完成签到,获得积分10
4秒前
minagao发布了新的文献求助10
4秒前
洋洋洋发布了新的文献求助10
7秒前
生命奋斗发布了新的文献求助10
8秒前
王忠莲完成签到,获得积分10
8秒前
养蚊子完成签到,获得积分10
8秒前
科研小小白完成签到,获得积分10
8秒前
天明发布了新的文献求助10
8秒前
川川发布了新的文献求助10
8秒前
10秒前
sfsdfs完成签到,获得积分10
11秒前
炙热的人生完成签到,获得积分10
11秒前
乐安完成签到,获得积分20
13秒前
14秒前
15秒前
ograss发布了新的文献求助10
16秒前
陈某发布了新的文献求助10
16秒前
17秒前
虚心的如冰完成签到 ,获得积分10
18秒前
李爱国应助zy采纳,获得10
18秒前
19秒前
哭泣茗完成签到,获得积分10
19秒前
ZCL完成签到,获得积分10
19秒前
vt发布了新的文献求助10
20秒前
20秒前
科研通AI2S应助hhhm采纳,获得10
20秒前
21秒前
科研通AI6应助jack采纳,获得10
22秒前
22秒前
exosome发布了新的文献求助30
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5002750
求助须知:如何正确求助?哪些是违规求助? 4247654
关于积分的说明 13233788
捐赠科研通 4046574
什么是DOI,文献DOI怎么找? 2213740
邀请新用户注册赠送积分活动 1223789
关于科研通互助平台的介绍 1144127