Multi-modal brain tumor segmentation via conditional synthesis with Fourier domain adaptation

分割 计算机科学 人工智能 合成数据 模式识别(心理学) 图像分割 人工神经网络 基本事实 计算机视觉
作者
Yasmina Al Khalil,Aymen Ayaz,Cristian Lorenz,Jürgen Weese,Josien P. W. Pluim,Marcel Breeuwer
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:112: 102332-102332 被引量:2
标识
DOI:10.1016/j.compmedimag.2024.102332
摘要

Accurate brain tumor segmentation is critical for diagnosis and treatment planning, whereby multi-modal magnetic resonance imaging (MRI) is typically used for analysis. However, obtaining all required sequences and expertly labeled data for training is challenging and can result in decreased quality of segmentation models developed through automated algorithms. In this work, we examine the possibility of employing a conditional generative adversarial network (GAN) approach for synthesizing multi-modal images to train deep learning-based neural networks aimed at high-grade glioma (HGG) segmentation. The proposed GAN is conditioned on auxiliary brain tissue and tumor segmentation masks, allowing us to attain better accuracy and control of tissue appearance during synthesis. To reduce the domain shift between synthetic and real MR images, we additionally adapt the low-frequency Fourier space components of synthetic data, reflecting the style of the image, to those of real data. We demonstrate the impact of Fourier domain adaptation (FDA) on the training of 3D segmentation networks and attain significant improvements in both the segmentation performance and prediction confidence. Similar outcomes are seen when such data is used as a training augmentation alongside the available real images. In fact, experiments on the BraTS2020 dataset reveal that models trained solely with synthetic data exhibit an improvement of up to 4% in Dice score when using FDA, while training with both real and FDA-processed synthetic data through augmentation results in an improvement of up to 5% in Dice compared to using real data alone. This study highlights the importance of considering image frequency in generative approaches for medical image synthesis and offers a promising approach to address data scarcity in medical imaging segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云山淡空明完成签到,获得积分10
2秒前
2秒前
wxy发布了新的文献求助30
4秒前
5秒前
5秒前
北木黎发布了新的文献求助10
6秒前
胡亚兰完成签到,获得积分20
7秒前
jagger发布了新的文献求助10
8秒前
小马甲应助糊涂的冰夏采纳,获得10
8秒前
虞翩跹完成签到,获得积分10
10秒前
YTY发布了新的文献求助10
11秒前
1111发布了新的文献求助10
12秒前
15秒前
在水一方应助chichenglin采纳,获得10
15秒前
21秒前
英姑应助奶姜采纳,获得10
21秒前
23秒前
23秒前
可罗雀完成签到,获得积分10
23秒前
23秒前
臧佳莹发布了新的文献求助10
27秒前
啦啦啦发布了新的文献求助30
27秒前
xuuuuumin发布了新的文献求助10
28秒前
平淡夏云完成签到,获得积分10
28秒前
领导范儿应助wyk_19920816采纳,获得10
28秒前
烟花应助www采纳,获得10
30秒前
31秒前
32秒前
1111完成签到,获得积分10
32秒前
老北京发布了新的文献求助10
33秒前
Always完成签到,获得积分10
34秒前
星辰大海应助Hemingwayway采纳,获得10
35秒前
桐桐应助剑K采纳,获得10
35秒前
逢投必中发布了新的文献求助10
36秒前
charatanfeng发布了新的文献求助10
36秒前
汉堡包应助魔幻问薇采纳,获得10
38秒前
40秒前
40秒前
Hemingwayway完成签到,获得积分10
40秒前
orixero应助徐矜采纳,获得10
40秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157474
求助须知:如何正确求助?哪些是违规求助? 2808881
关于积分的说明 7878865
捐赠科研通 2467299
什么是DOI,文献DOI怎么找? 1313327
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919