已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-modal brain tumor segmentation via conditional synthesis with Fourier domain adaptation

分割 计算机科学 人工智能 合成数据 模式识别(心理学) 图像分割 人工神经网络 基本事实 计算机视觉
作者
Yasmina Al Khalil,Aymen Ayaz,Cristian Lorenz,Jürgen Weese,Josien P. W. Pluim,Marcel Breeuwer
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:112: 102332-102332 被引量:2
标识
DOI:10.1016/j.compmedimag.2024.102332
摘要

Accurate brain tumor segmentation is critical for diagnosis and treatment planning, whereby multi-modal magnetic resonance imaging (MRI) is typically used for analysis. However, obtaining all required sequences and expertly labeled data for training is challenging and can result in decreased quality of segmentation models developed through automated algorithms. In this work, we examine the possibility of employing a conditional generative adversarial network (GAN) approach for synthesizing multi-modal images to train deep learning-based neural networks aimed at high-grade glioma (HGG) segmentation. The proposed GAN is conditioned on auxiliary brain tissue and tumor segmentation masks, allowing us to attain better accuracy and control of tissue appearance during synthesis. To reduce the domain shift between synthetic and real MR images, we additionally adapt the low-frequency Fourier space components of synthetic data, reflecting the style of the image, to those of real data. We demonstrate the impact of Fourier domain adaptation (FDA) on the training of 3D segmentation networks and attain significant improvements in both the segmentation performance and prediction confidence. Similar outcomes are seen when such data is used as a training augmentation alongside the available real images. In fact, experiments on the BraTS2020 dataset reveal that models trained solely with synthetic data exhibit an improvement of up to 4% in Dice score when using FDA, while training with both real and FDA-processed synthetic data through augmentation results in an improvement of up to 5% in Dice compared to using real data alone. This study highlights the importance of considering image frequency in generative approaches for medical image synthesis and offers a promising approach to address data scarcity in medical imaging segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
myg123完成签到 ,获得积分10
1秒前
自信夜春发布了新的文献求助10
1秒前
科研皇完成签到,获得积分10
6秒前
美好善斓完成签到 ,获得积分10
6秒前
冷静的访天完成签到 ,获得积分10
6秒前
自信夜春完成签到,获得积分10
7秒前
7秒前
刘瀚臻发布了新的文献求助20
8秒前
洛城完成签到,获得积分10
8秒前
晚意完成签到 ,获得积分10
9秒前
温馨家园完成签到 ,获得积分10
9秒前
hhhhh完成签到 ,获得积分10
10秒前
11秒前
南瓜小笨111111完成签到 ,获得积分10
11秒前
月冷完成签到 ,获得积分10
13秒前
huahua完成签到,获得积分10
13秒前
斯文败类应助bzy采纳,获得10
14秒前
14秒前
14秒前
wang1030完成签到 ,获得积分10
15秒前
讲故事发布了新的文献求助10
15秒前
小小佳作发布了新的文献求助150
16秒前
zyz发布了新的文献求助10
17秒前
zb发布了新的文献求助10
17秒前
徐铭完成签到,获得积分10
17秒前
大气幻丝完成签到,获得积分10
18秒前
llyn发布了新的文献求助10
18秒前
小L发布了新的文献求助10
19秒前
hhhh完成签到 ,获得积分10
19秒前
明亮的小蘑菇完成签到 ,获得积分10
20秒前
小二郎应助科研通管家采纳,获得10
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
Koalas应助刘瀚臻采纳,获得20
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
cy0824完成签到 ,获得积分10
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得30
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252991
求助须知:如何正确求助?哪些是违规求助? 4416534
关于积分的说明 13750009
捐赠科研通 4288755
什么是DOI,文献DOI怎么找? 2353041
邀请新用户注册赠送积分活动 1349815
关于科研通互助平台的介绍 1309493