Visual-Inertial-Laser-Lidar (VILL) SLAM: Real-Time Dense RGB-D Mapping for Pipe Environments

同时定位和映射 激光雷达 人工智能 计算机视觉 里程计 计算机科学 RGB颜色模型 里程表 惯性测量装置 遥感 机器人 地质学 移动机器人
作者
Tina Yu Tian,Luyuan Wang,Xu Yan,Fujun Ruan,G. Jaya Aadityaa,Howie Choset,Lü Li
标识
DOI:10.1109/iros55552.2023.10341761
摘要

Robotic solutions for pipeline inspection promise enhancement of human labor by automating data acquisition for pipe condition assessments, which are vital for the early detection of pipe anomalies and the prevention of hazardous leakages and explosions. Through simultaneous localization and mapping (SLAM), colorized 3D reconstructions of the pipe's inner surface can be generated, providing a more comprehensive digital record of the pipes compared to conventional vision-only inspection. Designed for generic environments, most SLAM methods suffer limited accuracy and substantial accumulative drift in confined and featureless spaces such as pipelines, due to a lack of suitable sensor hardware and state estimation techniques. In this research, we present VILL-SLAM: a dense RGB-D SLAM algorithm that combines a monocular camera (V), an inertial sensor (I), a ring-shaped laser profiler (L), and a Lidar (L) into a compact sensor package optimized for in-pipe operations. By fusing complementary visual and depth information from the color camera, laser profiling, and Lidar measurement, our method overcomes the challenges of metric scale mapping in conventional SLAM methods, despite its monocular configuration. To further improve localization accuracy, we utilize the pipe geometry to formulate two unique optimization factors that effectively constrain odometer drift. To validate our method, we conducted real-world experiments in physical pipes, comparing the performance of our approach against other state-of-the-art algorithms. The proposed SLAM framework achieved 6.6 times drift improvement with 0.84% mean odometry drift over 22 meters and a mean pointwise 3D scanning error of 0.88mm in 12-inch diameter pipes. This research represents a significant advancement in miniature in-pipe inspection, localization, and mapping sensing techniques. It has the potential to become a core enabling technology for the next generation of highly capable in-pipe robots, capable of reconstructing photo-realistic 3D pipe scans and providing disruptive pipe locating and georeferencing capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鄂海菡完成签到,获得积分0
刚刚
在水一方重新开启了TTw文献应助
1秒前
欧拉不拉完成签到,获得积分10
3秒前
华仔完成签到,获得积分10
3秒前
3秒前
李爱国应助佟韩采纳,获得10
3秒前
6秒前
霸气的惜寒完成签到,获得积分10
7秒前
宁天问发布了新的文献求助10
7秒前
8秒前
传奇3应助ZAO采纳,获得10
8秒前
9秒前
10秒前
12秒前
hzl完成签到,获得积分10
13秒前
13秒前
桐桐应助sansan采纳,获得30
13秒前
Wfmmm完成签到,获得积分10
14秒前
夏侯德东发布了新的文献求助30
14秒前
值雨发布了新的文献求助30
14秒前
NeuroWhite完成签到,获得积分10
15秒前
粗犷的灵松完成签到 ,获得积分10
15秒前
16秒前
54489完成签到,获得积分10
17秒前
倪倪发布了新的文献求助10
17秒前
kklkimo发布了新的文献求助10
18秒前
吴彦祖发布了新的文献求助10
18秒前
18秒前
Manchester完成签到,获得积分10
19秒前
宁天问发布了新的文献求助10
20秒前
22秒前
34Kenny应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
22秒前
乐乐应助科研通管家采纳,获得10
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240722
求助须知:如何正确求助?哪些是违规求助? 2885466
关于积分的说明 8238658
捐赠科研通 2553893
什么是DOI,文献DOI怎么找? 1382010
科研通“疑难数据库(出版商)”最低求助积分说明 649440
邀请新用户注册赠送积分活动 625079