Visual-Inertial-Laser-Lidar (VILL) SLAM: Real-Time Dense RGB-D Mapping for Pipe Environments

同时定位和映射 激光雷达 人工智能 计算机视觉 里程计 计算机科学 RGB颜色模型 里程表 惯性测量装置 遥感 机器人 地质学 移动机器人
作者
Tina Yu Tian,Luyuan Wang,Xu Yan,Fujun Ruan,G. Jaya Aadityaa,Howie Choset,Lü Li
标识
DOI:10.1109/iros55552.2023.10341761
摘要

Robotic solutions for pipeline inspection promise enhancement of human labor by automating data acquisition for pipe condition assessments, which are vital for the early detection of pipe anomalies and the prevention of hazardous leakages and explosions. Through simultaneous localization and mapping (SLAM), colorized 3D reconstructions of the pipe's inner surface can be generated, providing a more comprehensive digital record of the pipes compared to conventional vision-only inspection. Designed for generic environments, most SLAM methods suffer limited accuracy and substantial accumulative drift in confined and featureless spaces such as pipelines, due to a lack of suitable sensor hardware and state estimation techniques. In this research, we present VILL-SLAM: a dense RGB-D SLAM algorithm that combines a monocular camera (V), an inertial sensor (I), a ring-shaped laser profiler (L), and a Lidar (L) into a compact sensor package optimized for in-pipe operations. By fusing complementary visual and depth information from the color camera, laser profiling, and Lidar measurement, our method overcomes the challenges of metric scale mapping in conventional SLAM methods, despite its monocular configuration. To further improve localization accuracy, we utilize the pipe geometry to formulate two unique optimization factors that effectively constrain odometer drift. To validate our method, we conducted real-world experiments in physical pipes, comparing the performance of our approach against other state-of-the-art algorithms. The proposed SLAM framework achieved 6.6 times drift improvement with 0.84% mean odometry drift over 22 meters and a mean pointwise 3D scanning error of 0.88mm in 12-inch diameter pipes. This research represents a significant advancement in miniature in-pipe inspection, localization, and mapping sensing techniques. It has the potential to become a core enabling technology for the next generation of highly capable in-pipe robots, capable of reconstructing photo-realistic 3D pipe scans and providing disruptive pipe locating and georeferencing capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美夜白完成签到,获得积分10
1秒前
1秒前
1秒前
陆小果完成签到,获得积分10
1秒前
3秒前
健壮丝袜发布了新的文献求助10
3秒前
Jasper应助chinnker采纳,获得10
3秒前
3秒前
4秒前
4秒前
Run完成签到,获得积分10
4秒前
yizhiGao应助Jenaloe采纳,获得10
5秒前
昌笑白完成签到,获得积分10
5秒前
Kenzonvay发布了新的文献求助10
5秒前
Spinnin完成签到,获得积分10
5秒前
5秒前
慧慧发布了新的文献求助10
6秒前
kk发布了新的文献求助30
8秒前
8秒前
8秒前
诸葛凤雏完成签到,获得积分10
8秒前
diguohu完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
caibao发布了新的文献求助10
9秒前
9秒前
Goodenough发布了新的文献求助10
10秒前
zhaoyy完成签到,获得积分20
11秒前
wls完成签到 ,获得积分10
11秒前
小马甲应助发嗲的悟空采纳,获得10
12秒前
粗心的采文完成签到,获得积分10
13秒前
慧慧完成签到,获得积分20
13秒前
13秒前
14秒前
15秒前
wengjiaqi完成签到,获得积分10
15秒前
完美夏天完成签到,获得积分10
16秒前
义气碧菡发布了新的文献求助10
16秒前
key完成签到,获得积分10
17秒前
02完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951219
求助须知:如何正确求助?哪些是违规求助? 3496615
关于积分的说明 11083276
捐赠科研通 3227034
什么是DOI,文献DOI怎么找? 1784184
邀请新用户注册赠送积分活动 868252
科研通“疑难数据库(出版商)”最低求助积分说明 801091