重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

MRI radiomics for predicting intracranial progression in non-small-cell lung cancer patients with brain metastases treated with epidermal growth factor receptor tyrosine kinase inhibitors

医学 内科学 列线图 肺癌 肿瘤科 磁共振成像 单变量分析 表皮生长因子受体 逻辑回归 间变性淋巴瘤激酶 多元分析 放射科 癌症 恶性胸腔积液
作者
Jun Qu,Tao Zhang,X.-C. Zhang,Wen Zhang,Y. Li,Qiyong Gong,L. Yao,Su Lui
出处
期刊:Clinical Radiology [Elsevier]
卷期号:79 (4): e582-e591
标识
DOI:10.1016/j.crad.2024.01.005
摘要

AIM

To identify clinical and magnetic resonance imaging (MRI) radiomics predictors specialised for intracranial progression (IP) after first-line epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment in non-small-cell lung cancer (NSCLC) patients with brain metastases (BMs).

MATERIALS AND METHODS

Seventy EGFR-mutated NSCLC patients with a total of 212 BMs who received first-line EGFR-TKI therapy were enrolled. Radiomics features were extracted from the BM regions on the pretreatment contrast-enhanced T1-weighted images, and the radiomics score (rad-score) of each BM was established based on the selected features. Furthermore, the mean rad-score derived from the average rad-score of all included BMs in each patient was calculated. Univariate and multivariate logistic regression analyses were performed to identify potential predictors of IP. Prediction models based on different predictors and their combinations were constructed, and nomogram based on the optimal prediction model was evaluated.

RESULTS

Thirty-three (47.1 %) patients developed IP, and the remaining 37 (52.9 %) patients were IP-free. EGFR-19del mutation (OR 0.19, 95 % CI 0.05–0.69), third-generation TKI treatment (OR 0.33, 95 % CI 0.16–0.67) and mean rad-score (OR 5.71, 95 % CI 1.65–19.68) were found to be independent predictive factors. Models based on these three predictors alone and in combination (combined model) achieved AUCs of 0.64, 0.64, 0.74, and 0.86 and 0.64, 0.64, 0.75, and 0.84 in the training and validation sets, respectively, and the combined model demonstrated optimal performance for predicting IP.

CONCLUSIONS

The model integrating EGFR-19del mutation, third-generation TKI treatment and mean rad-score had good predictive value for IP after EGFR-TKI treatment in NSCLC patients with BM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Summer028完成签到,获得积分20
1秒前
yuan完成签到,获得积分10
1秒前
chenqiumu完成签到,获得积分0
2秒前
2秒前
MingY完成签到,获得积分20
2秒前
qian完成签到,获得积分10
3秒前
Gasoline.发布了新的文献求助10
4秒前
赵赵完成签到,获得积分10
4秒前
4秒前
苏乘风发布了新的文献求助10
5秒前
5秒前
qq完成签到,获得积分10
6秒前
6秒前
双眼皮跳蚤完成签到,获得积分0
6秒前
林yu完成签到,获得积分10
7秒前
CoverSx完成签到,获得积分10
7秒前
传奇3应助合适的秋白采纳,获得10
8秒前
lulu完成签到 ,获得积分10
9秒前
科研吴彦祖完成签到 ,获得积分10
9秒前
北极星发布了新的文献求助10
9秒前
liuyue完成签到,获得积分10
10秒前
你好呀完成签到,获得积分10
10秒前
绿蚁新醅酒呀完成签到,获得积分10
10秒前
Summer028发布了新的文献求助10
10秒前
SAKURA应助Evan采纳,获得10
10秒前
丽优发布了新的文献求助10
10秒前
10秒前
和花花完成签到,获得积分10
11秒前
拂晨柳絮发布了新的文献求助10
12秒前
Owen应助sy采纳,获得10
12秒前
酷波er应助1609028采纳,获得50
12秒前
12秒前
着急的蜗牛完成签到,获得积分20
13秒前
13秒前
明空完成签到,获得积分10
13秒前
乐乐应助学术机器1采纳,获得10
13秒前
橘子1发布了新的文献求助10
13秒前
赘婿应助屹男采纳,获得10
14秒前
LZH发布了新的文献求助20
14秒前
科研通AI6应助王锐采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466870
求助须知:如何正确求助?哪些是违规求助? 4570586
关于积分的说明 14326244
捐赠科研通 4497151
什么是DOI,文献DOI怎么找? 2463752
邀请新用户注册赠送积分活动 1452682
关于科研通互助平台的介绍 1427605