MRI radiomics for predicting intracranial progression in non-small-cell lung cancer patients with brain metastases treated with epidermal growth factor receptor tyrosine kinase inhibitors

医学 内科学 列线图 肺癌 肿瘤科 磁共振成像 单变量分析 表皮生长因子受体 逻辑回归 间变性淋巴瘤激酶 多元分析 放射科 癌症 恶性胸腔积液
作者
Jun Qu,Tao Zhang,X.-C. Zhang,Wen Zhang,Y. Li,Qiyong Gong,L. Yao,Su Lui
出处
期刊:Clinical Radiology [Elsevier]
卷期号:79 (4): e582-e591
标识
DOI:10.1016/j.crad.2024.01.005
摘要

AIM

To identify clinical and magnetic resonance imaging (MRI) radiomics predictors specialised for intracranial progression (IP) after first-line epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment in non-small-cell lung cancer (NSCLC) patients with brain metastases (BMs).

MATERIALS AND METHODS

Seventy EGFR-mutated NSCLC patients with a total of 212 BMs who received first-line EGFR-TKI therapy were enrolled. Radiomics features were extracted from the BM regions on the pretreatment contrast-enhanced T1-weighted images, and the radiomics score (rad-score) of each BM was established based on the selected features. Furthermore, the mean rad-score derived from the average rad-score of all included BMs in each patient was calculated. Univariate and multivariate logistic regression analyses were performed to identify potential predictors of IP. Prediction models based on different predictors and their combinations were constructed, and nomogram based on the optimal prediction model was evaluated.

RESULTS

Thirty-three (47.1 %) patients developed IP, and the remaining 37 (52.9 %) patients were IP-free. EGFR-19del mutation (OR 0.19, 95 % CI 0.05–0.69), third-generation TKI treatment (OR 0.33, 95 % CI 0.16–0.67) and mean rad-score (OR 5.71, 95 % CI 1.65–19.68) were found to be independent predictive factors. Models based on these three predictors alone and in combination (combined model) achieved AUCs of 0.64, 0.64, 0.74, and 0.86 and 0.64, 0.64, 0.75, and 0.84 in the training and validation sets, respectively, and the combined model demonstrated optimal performance for predicting IP.

CONCLUSIONS

The model integrating EGFR-19del mutation, third-generation TKI treatment and mean rad-score had good predictive value for IP after EGFR-TKI treatment in NSCLC patients with BM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yan完成签到,获得积分20
1秒前
1秒前
小鹿斑比完成签到 ,获得积分10
2秒前
洛洛完成签到 ,获得积分10
2秒前
浮华乱世完成签到 ,获得积分10
2秒前
otaro完成签到,获得积分10
2秒前
万能图书馆应助zsqqqqq采纳,获得10
2秒前
领导范儿应助zhonghbush采纳,获得10
3秒前
reck发布了新的文献求助10
3秒前
舒服的鱼完成签到 ,获得积分10
3秒前
3秒前
WLL完成签到,获得积分10
3秒前
3秒前
罗mian发布了新的文献求助10
3秒前
轻松的雨旋完成签到,获得积分10
4秒前
星辰大海应助小宇采纳,获得10
4秒前
啦啦啦发布了新的文献求助10
5秒前
zxk完成签到,获得积分10
5秒前
5秒前
6秒前
xjx完成签到 ,获得积分10
6秒前
酷炫大树发布了新的文献求助10
7秒前
orixero应助凶狠的盼柳采纳,获得10
7秒前
阿翼完成签到 ,获得积分10
7秒前
妮露的修狗完成签到,获得积分10
7秒前
乐园完成签到,获得积分10
7秒前
开朗满天完成签到 ,获得积分10
8秒前
8秒前
8秒前
成就缘分发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
li发布了新的文献求助10
9秒前
胡枝子发布了新的文献求助30
10秒前
季悦完成签到,获得积分10
10秒前
BaiX完成签到,获得积分10
10秒前
10秒前
顾矜应助ttssooe采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672