Joint Optimization of Vehicular Sensing and Vehicle Digital Twins Deployment for DT-Assisted IoVs

接头(建筑物) 计算机科学 软件部署 工程类 操作系统 建筑工程
作者
Lun Tang,Zhangchao Cheng,Jun Dai,Hongpeng Zhang,Qianbin Chen
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (8): 11834-11847 被引量:2
标识
DOI:10.1109/tvt.2024.3373175
摘要

Emerging Intelligent Transportation Systems (ITS) applications in the B5G/6G era have higher demands on real-time information in real traffic scenarios, and the current Internet of Vehicles (IoVs) can hardly support the operation of such applications. To realize the efficient operation of ITS applications, we integrate Digital Twin (DT) technology into IoVs and propose a framework of DT-assisted cloud-edge collaboration IoVs for intelligent transportation. DT synchronization requires vehicular sensing and data uploading, where the sensing capability and sensing policy of different vehicles affect the accuracy of DT, and the simultaneous sensing of neighboring vehicles creates data redundancy. The deployment strategy of Vehicle DTs (VDTs) at the network edge affects the real-time performance of DT. The mobility of vehicles, the low-latency requirements of DT, and the limited heterogeneous resources of edge servers pose great challenges to the deployment of VDTs. To address the above problems, we established the vehicular sensing model considering sensing quality, cost and redundancy. Then, A DT synchronization mechanism is designed and an improved Age of Information (AoI) metric is used to measure the freshness of the real vehicle state data received by the cloud during the DT synchronization process. We proposed a joint optimization problem of vehicular sensing and VDTs deployment to maximize the system Quality of Services (QoS), which is reflected through the vehicular sensing quality, AoI and system cost in DT synchronization process. We develop an algorithm based on Multi-Agent Deep Reinforcement Learning (MADRL) to solve this optimization problem, called DTSD-MAPPO. Numerical results show that the scheme reduces the system cost and improves the accuracy and real-time in DT synchronization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助永吉采纳,获得10
刚刚
中和皇极应助yingjin采纳,获得10
1秒前
丢丢完成签到,获得积分10
1秒前
2秒前
Jasper应助饱满的铅笔采纳,获得10
4秒前
4秒前
劲秉应助含蓄千凝采纳,获得30
5秒前
5秒前
丢丢发布了新的文献求助10
5秒前
小蘑菇应助卿卿采纳,获得10
5秒前
7秒前
桐桐应助wang采纳,获得10
9秒前
qiong发布了新的文献求助10
10秒前
11秒前
tz107236发布了新的文献求助10
11秒前
善学以致用应助holmes采纳,获得10
13秒前
不想晚睡发布了新的文献求助10
14秒前
Zhangtao完成签到,获得积分10
15秒前
Orange应助脑阔药爆炸采纳,获得10
18秒前
敬敬驳回了大个应助
22秒前
23秒前
28秒前
sumu完成签到,获得积分10
28秒前
小二郎应助缓慢的博采纳,获得10
33秒前
儒雅谷云完成签到,获得积分10
33秒前
搜集达人应助qiong采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
36秒前
JamesPei应助科研通管家采纳,获得30
36秒前
zhongu应助科研通管家采纳,获得10
36秒前
小二郎应助科研通管家采纳,获得10
36秒前
Ava应助科研通管家采纳,获得10
37秒前
37秒前
ceeray23应助科研通管家采纳,获得10
37秒前
丘比特应助科研通管家采纳,获得10
37秒前
Jasper应助科研通管家采纳,获得10
37秒前
SciGPT应助科研通管家采纳,获得10
37秒前
田様应助科研通管家采纳,获得30
37秒前
英俊的铭应助科研通管家采纳,获得10
37秒前
CipherSage应助科研通管家采纳,获得10
37秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462675
求助须知:如何正确求助?哪些是违规求助? 3056170
关于积分的说明 9050910
捐赠科研通 2745799
什么是DOI,文献DOI怎么找? 1506591
科研通“疑难数据库(出版商)”最低求助积分说明 696165
邀请新用户注册赠送积分活动 695693