A novel combined flow field design and performance analysis of proton exchange membrane electrolysis cell

电解 质子交换膜燃料电池 流量(数学) 电流密度 领域(数学) 电流(流体) 材料科学 机械 化学 热力学 物理 电极 物理化学 数学 电解质 量子力学 生物化学 纯数学
作者
Xin Su,Qian Zhang,Lijun Xu,Bing Hu,Xiaohan Wu,TianXi Qin
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:61: 444-459 被引量:9
标识
DOI:10.1016/j.ijhydene.2024.02.339
摘要

The design and optimization of the flow field structure significantly impact the performance of the proton exchange membrane electrolyzer. However, the pumping power should be added to the flow field selection criteria system in the flow field evaluation criteria of the electrolyzer. This paper first establishes and experimentally verifies a three-dimensional, two-phase, steady-state, non-isothermal proton exchange membrane electrolyzer model. Secondly, a new type of combined flow field structure is proposed by combining the cross-finger flow field, serpentine flow field, and cross-flow field and compared with the traditional flow field in many aspects. Finally, an evaluation index (current density-pressure ratio) considering pumping power is proposed. The results show that the current density of the combined flow field is 7.6% higher than that of the serpentine flow field, 13.0% higher than that of the cross-finger flow field, 13.7% higher than that of the double-serpentine flow field, and 29.4% higher than that of the parallel flow field when the voltage is 2.0 V. The combined flow field has the optimal performance, increasing the reaction rate and improving the gas discharge efficiency. In addition, the combined flow field has the best current density-pressure ratio. This means the combined flow field has lower energy consumption than the conventional one under the same performance conditions. The study's results can provide a new research idea and theoretical basis for developing a new type of flow field in a proton exchange membrane electrolyzer and provide simulation and experimental support for developing a high-performance flow field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xng发布了新的文献求助10
刚刚
逸风望完成签到,获得积分10
1秒前
1秒前
SYLH应助123采纳,获得10
1秒前
龙卷风摧毁停车场完成签到,获得积分10
1秒前
十一口衣完成签到,获得积分10
2秒前
Eileen完成签到,获得积分10
2秒前
李健应助scl123采纳,获得10
2秒前
1565532470完成签到,获得积分10
2秒前
健壮不斜完成签到 ,获得积分10
3秒前
坦率绮山完成签到 ,获得积分10
3秒前
兰格格完成签到,获得积分10
3秒前
任我行完成签到,获得积分10
3秒前
小蘑菇应助如果我沉默采纳,获得10
3秒前
Gao_Z_X完成签到 ,获得积分10
3秒前
想个名字发布了新的文献求助30
3秒前
柴胡完成签到,获得积分10
3秒前
强强强强完成签到,获得积分10
3秒前
3秒前
Zo发布了新的文献求助10
4秒前
卡里的乏味完成签到,获得积分10
5秒前
小陈完成签到,获得积分10
6秒前
星辰大海应助南风喜欢采纳,获得10
7秒前
科研通AI2S应助bing采纳,获得10
8秒前
科研通AI2S应助bing采纳,获得10
8秒前
8秒前
new_vision完成签到,获得积分10
8秒前
园艺小学生完成签到,获得积分10
8秒前
李爱国应助forg采纳,获得10
9秒前
Sissi完成签到,获得积分10
10秒前
aibiotech完成签到,获得积分10
10秒前
10秒前
xng完成签到,获得积分10
11秒前
11秒前
Seven完成签到,获得积分10
12秒前
邵初蓝完成签到,获得积分10
12秒前
12秒前
淡然寒蕾完成签到,获得积分10
12秒前
迷路凌柏完成签到 ,获得积分10
12秒前
yydsyk完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912