Transition metal doped into defective boron nitride nanotubes for CO2RR: Regulation of catalytic activity and mechanism by curvature effect

氮化硼 机制(生物学) 过渡金属 催化作用 兴奋剂 材料科学 曲率 纳米技术 化学工程 化学物理 化学 有机化学 几何学 物理 光电子学 工程类 数学 量子力学
作者
Qigang Chen,Qiang Ke,Xiuyun Zhao,Yingjie Feng,Qingrui Zhao,Jing Feng,Xingbo Ge,Xin Chen
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:338: 126552-126552 被引量:3
标识
DOI:10.1016/j.seppur.2024.126552
摘要

Utilizing electrochemical CO2 reduction reaction (CO2RR) to synthesize chemical fuels is an effective strategy to alleviate environmental pollution and energy crisis. In this work, a series of single transition metal atoms (TM = Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd) are doped into boron nitride nanotubes (BNNTs) of BN divacancy defect with different curvature parameters, which are named as TM-DVBNNT(n, n), and their CO2RR catalytic performance is systematically studied by density functional theory (DFT) methods. To begin with, the calculation results of formation energy and dissolution potential show that all TM-DVBNNT(n, n) have good thermodynamic and electrochemical stability. Secondly, after calculation of Gibbs free energy, Mn-, Fe-, Ru, and Rh-DVBNNT(5, 5) have good catalytic performance with the corresponding limiting potential (UL) values of − 0.43, −0.40, −0.27, and − 0.50 V, respectively. Based on this, we further investigate the influence of curvature on the stability, activity, and mechanism of Ru-DVBNNT(n, n) with the highest activity. It is worth noting that as the diameter of Ru-DVBNNT(n, n) continues to increase, their stability and activity also continue to enhance, and Ru-DVBNNT(8, 8) with the largest diameter is expected to become the best performing CO2RR electrocatalyst with the UL value of − 0.16 V. Besides, for Ru-DVBNNT(3, 3) and Ru-DVBNNT(4, 4), their final product is HCOOH. In contrast, the CH4 product is more inclined to form on Ru-DVBNNTs with chiral indexes of (5, 5), (6, 6), (7, 7), and (8, 8). In summary, this work has laid a solid theoretical foundation for future experimental design of nanotube structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dtcao完成签到,获得积分20
刚刚
笨笨的外套完成签到,获得积分10
1秒前
缓慢的王完成签到,获得积分10
2秒前
周一一完成签到,获得积分10
2秒前
Libra完成签到,获得积分10
2秒前
2秒前
一一完成签到,获得积分10
2秒前
3秒前
执着黑米完成签到 ,获得积分10
3秒前
3秒前
浪费完成签到 ,获得积分10
3秒前
4秒前
嘎嘎完成签到,获得积分20
4秒前
Jackson_Cai完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
天天下文献完成签到 ,获得积分10
6秒前
6秒前
6秒前
温暖书雪完成签到,获得积分10
6秒前
FunnyL发布了新的文献求助10
6秒前
嘟嘟发布了新的文献求助10
7秒前
orixero应助晕倒一下采纳,获得10
7秒前
英俊水池完成签到,获得积分10
7秒前
溪水完成签到 ,获得积分10
7秒前
飞蚁完成签到,获得积分10
7秒前
YY完成签到,获得积分10
7秒前
8秒前
9秒前
chengli完成签到,获得积分10
9秒前
岁岁完成签到 ,获得积分10
9秒前
tangyong完成签到,获得积分10
10秒前
Japrin完成签到,获得积分10
10秒前
星辰大海完成签到,获得积分10
11秒前
charon完成签到 ,获得积分10
11秒前
大魁完成签到,获得积分10
11秒前
心悦SCI完成签到,获得积分10
11秒前
白日幻想家完成签到 ,获得积分10
11秒前
stephanine完成签到 ,获得积分10
12秒前
fan051500完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482803
求助须知:如何正确求助?哪些是违规求助? 4583511
关于积分的说明 14390213
捐赠科研通 4512809
什么是DOI,文献DOI怎么找? 2473255
邀请新用户注册赠送积分活动 1459255
关于科研通互助平台的介绍 1432883