Deep learning predicts cervical lymph node metastasis in clinically node-negative papillary thyroid carcinoma

医学 神经组阅片室 放射科 甲状腺癌 试验装置 淋巴结 甲状腺癌 卷积神经网络 转移 阶段(地层学) 人工智能 癌症 甲状腺 内科学 计算机科学 神经学 古生物学 精神科 生物
作者
Liqiang Zhou,Shu‐E Zeng,Jianwei Xu,Wenzhi Lv,Dong Mei,Jia‐Jun Tu,Fan Jiang,Xin‐Wu Cui,Christoph F. Dietrich
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:14 (1) 被引量:9
标识
DOI:10.1186/s13244-023-01550-2
摘要

Abstract Objectives Precise determination of cervical lymph node metastasis (CLNM) involvement in patients with early-stage thyroid cancer is fairly significant for identifying appropriate cervical treatment options. However, it is almost impossible to directly judge lymph node metastasis based on the imaging information of early-stage thyroid cancer patients with clinically negative lymph nodes. Methods Preoperative US images (BMUS and CDFI) of 1031 clinically node negative PTC patients definitively diagnosed on pathology from two independent hospitals were divided into training set, validation set, internal test set, and external test set. An ensemble deep learning model based on ResNet-50 was built integrating clinical variables, BMUS, and CDFI images using a bagging classifier to predict metastasis of CLN. The final ensemble model performance was compared with expert interpretation. Results The ensemble deep convolutional neural network (DCNN) achieved high performance in predicting CLNM in the test sets examined, with area under the curve values of 0.86 (95% CI 0.78–0.94) for the internal test set and 0.77 (95% CI 0.68–0.87) for the external test set. Compared to all radiologists averaged, the ensemble DCNN model also exhibited improved performance in making predictions. For the external validation set, accuracy was 0.72 versus 0.59 ( p = 0.074), sensitivity was 0.75 versus 0.58 ( p = 0.039), and specificity was 0.69 versus 0.60 ( p = 0.078). Conclusions Deep learning can non-invasive predict CLNM for clinically node-negative PTC using conventional US imaging of thyroid cancer nodules and clinical variables in a multi-institutional dataset with superior accuracy, sensitivity, and specificity comparable to experts. Critical relevance statement Deep learning efficiently predicts CLNM for clinically node-negative PTC based on US images and clinical variables in an advantageous manner. Key points • A deep learning-based ensemble algorithm for predicting CLNM in PTC was developed. • Ultrasound AI analysis combined with clinical data has advantages in predicting CLNM. • Compared to all experts averaged, the DCNN model achieved higher test performance. Graphical Abstract

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
阿布与小佛完成签到 ,获得积分10
3秒前
迷人冥完成签到 ,获得积分10
3秒前
Omni发布了新的文献求助10
6秒前
留猪完成签到,获得积分10
10秒前
自然若完成签到,获得积分10
10秒前
愉快的丹彤完成签到 ,获得积分10
11秒前
包包琪完成签到 ,获得积分10
11秒前
OSASACB完成签到 ,获得积分10
12秒前
鱼鱼鱼鱼完成签到 ,获得积分10
17秒前
修兮完成签到 ,获得积分10
17秒前
吾系渣渣辉完成签到 ,获得积分10
21秒前
诺亚方舟哇哈哈完成签到 ,获得积分0
27秒前
AU完成签到 ,获得积分10
28秒前
称心芷天完成签到 ,获得积分10
30秒前
zbb123完成签到 ,获得积分10
33秒前
sci完成签到 ,获得积分10
37秒前
谦让汝燕完成签到,获得积分10
37秒前
桥豆麻袋完成签到,获得积分10
39秒前
wp4455777完成签到,获得积分10
42秒前
ZS完成签到,获得积分10
43秒前
xcwy完成签到,获得积分10
43秒前
tt完成签到 ,获得积分10
46秒前
鲤鱼灵阳完成签到,获得积分10
55秒前
少盐完成签到,获得积分10
1分钟前
1分钟前
晚意完成签到 ,获得积分10
1分钟前
zhang完成签到 ,获得积分10
1分钟前
南风完成签到 ,获得积分10
1分钟前
不秃燃的小老弟完成签到 ,获得积分10
1分钟前
木康薛完成签到,获得积分10
1分钟前
Tough完成签到 ,获得积分10
1分钟前
轻松白开水完成签到 ,获得积分10
1分钟前
deletelzr完成签到,获得积分10
1分钟前
1分钟前
一条裸游的鱼完成签到,获得积分10
1分钟前
1分钟前
忧虑的书南文舟舟完成签到 ,获得积分10
1分钟前
ding应助xu采纳,获得10
1分钟前
oyly完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650012
关于积分的说明 14689432
捐赠科研通 4591885
什么是DOI,文献DOI怎么找? 2519386
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463118