亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning predicts cervical lymph node metastasis in clinically node-negative papillary thyroid carcinoma

医学 神经组阅片室 放射科 甲状腺癌 试验装置 淋巴结 甲状腺癌 卷积神经网络 转移 阶段(地层学) 人工智能 癌症 甲状腺 内科学 计算机科学 神经学 古生物学 精神科 生物
作者
Liqiang Zhou,Shu‐E Zeng,Jianwei Xu,Wenzhi Lv,Dong Mei,Jia‐Jun Tu,Fan Jiang,Xin‐Wu Cui,Christoph F. Dietrich
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:14 (1) 被引量:9
标识
DOI:10.1186/s13244-023-01550-2
摘要

Abstract Objectives Precise determination of cervical lymph node metastasis (CLNM) involvement in patients with early-stage thyroid cancer is fairly significant for identifying appropriate cervical treatment options. However, it is almost impossible to directly judge lymph node metastasis based on the imaging information of early-stage thyroid cancer patients with clinically negative lymph nodes. Methods Preoperative US images (BMUS and CDFI) of 1031 clinically node negative PTC patients definitively diagnosed on pathology from two independent hospitals were divided into training set, validation set, internal test set, and external test set. An ensemble deep learning model based on ResNet-50 was built integrating clinical variables, BMUS, and CDFI images using a bagging classifier to predict metastasis of CLN. The final ensemble model performance was compared with expert interpretation. Results The ensemble deep convolutional neural network (DCNN) achieved high performance in predicting CLNM in the test sets examined, with area under the curve values of 0.86 (95% CI 0.78–0.94) for the internal test set and 0.77 (95% CI 0.68–0.87) for the external test set. Compared to all radiologists averaged, the ensemble DCNN model also exhibited improved performance in making predictions. For the external validation set, accuracy was 0.72 versus 0.59 ( p = 0.074), sensitivity was 0.75 versus 0.58 ( p = 0.039), and specificity was 0.69 versus 0.60 ( p = 0.078). Conclusions Deep learning can non-invasive predict CLNM for clinically node-negative PTC using conventional US imaging of thyroid cancer nodules and clinical variables in a multi-institutional dataset with superior accuracy, sensitivity, and specificity comparable to experts. Critical relevance statement Deep learning efficiently predicts CLNM for clinically node-negative PTC based on US images and clinical variables in an advantageous manner. Key points • A deep learning-based ensemble algorithm for predicting CLNM in PTC was developed. • Ultrasound AI analysis combined with clinical data has advantages in predicting CLNM. • Compared to all experts averaged, the DCNN model achieved higher test performance. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王靓仔发布了新的文献求助10
3秒前
微笑驳完成签到 ,获得积分10
13秒前
沐慕籽完成签到,获得积分20
22秒前
28秒前
安有才完成签到,获得积分10
32秒前
威武碧蓉发布了新的文献求助10
33秒前
40秒前
传奇3应助烂漫鲂采纳,获得10
41秒前
43秒前
欧阳孤云发布了新的文献求助10
49秒前
哈哈大王完成签到 ,获得积分10
52秒前
欧阳孤云完成签到,获得积分10
56秒前
1分钟前
爆米花应助田安宁采纳,获得10
1分钟前
Jasper应助繁星采纳,获得10
1分钟前
zayne完成签到 ,获得积分10
1分钟前
可乐完成签到 ,获得积分10
1分钟前
1分钟前
繁星发布了新的文献求助10
1分钟前
1分钟前
繁星完成签到,获得积分10
1分钟前
DocChen完成签到,获得积分10
1分钟前
DocChen发布了新的文献求助10
2分钟前
吃花生不吃花生米完成签到,获得积分10
2分钟前
和平使命应助DocChen采纳,获得10
2分钟前
藤椒辣鱼应助DocChen采纳,获得10
2分钟前
2分钟前
2分钟前
Crystal完成签到,获得积分10
2分钟前
2分钟前
熊一只完成签到,获得积分10
2分钟前
博博儿发布了新的文献求助10
2分钟前
恶恶么v完成签到,获得积分10
2分钟前
852应助博博儿采纳,获得10
2分钟前
下午好完成签到 ,获得积分10
2分钟前
Fiona完成签到 ,获得积分10
2分钟前
2分钟前
圣泽同学完成签到,获得积分10
2分钟前
田安宁发布了新的文献求助10
2分钟前
科研通AI2S应助圣泽同学采纳,获得10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460039
求助须知:如何正确求助?哪些是违规求助? 3054358
关于积分的说明 9041817
捐赠科研通 2743703
什么是DOI,文献DOI怎么找? 1505138
科研通“疑难数据库(出版商)”最低求助积分说明 695572
邀请新用户注册赠送积分活动 694860