清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning predicts cervical lymph node metastasis in clinically node-negative papillary thyroid carcinoma

医学 神经组阅片室 放射科 甲状腺癌 试验装置 淋巴结 甲状腺癌 卷积神经网络 转移 阶段(地层学) 人工智能 癌症 甲状腺 内科学 计算机科学 神经学 古生物学 精神科 生物
作者
Liqiang Zhou,Shu‐E Zeng,Jianwei Xu,Wenzhi Lv,Dong Mei,Jia‐Jun Tu,Fan Jiang,Xin‐Wu Cui,Christoph F. Dietrich
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:14 (1) 被引量:9
标识
DOI:10.1186/s13244-023-01550-2
摘要

Abstract Objectives Precise determination of cervical lymph node metastasis (CLNM) involvement in patients with early-stage thyroid cancer is fairly significant for identifying appropriate cervical treatment options. However, it is almost impossible to directly judge lymph node metastasis based on the imaging information of early-stage thyroid cancer patients with clinically negative lymph nodes. Methods Preoperative US images (BMUS and CDFI) of 1031 clinically node negative PTC patients definitively diagnosed on pathology from two independent hospitals were divided into training set, validation set, internal test set, and external test set. An ensemble deep learning model based on ResNet-50 was built integrating clinical variables, BMUS, and CDFI images using a bagging classifier to predict metastasis of CLN. The final ensemble model performance was compared with expert interpretation. Results The ensemble deep convolutional neural network (DCNN) achieved high performance in predicting CLNM in the test sets examined, with area under the curve values of 0.86 (95% CI 0.78–0.94) for the internal test set and 0.77 (95% CI 0.68–0.87) for the external test set. Compared to all radiologists averaged, the ensemble DCNN model also exhibited improved performance in making predictions. For the external validation set, accuracy was 0.72 versus 0.59 ( p = 0.074), sensitivity was 0.75 versus 0.58 ( p = 0.039), and specificity was 0.69 versus 0.60 ( p = 0.078). Conclusions Deep learning can non-invasive predict CLNM for clinically node-negative PTC using conventional US imaging of thyroid cancer nodules and clinical variables in a multi-institutional dataset with superior accuracy, sensitivity, and specificity comparable to experts. Critical relevance statement Deep learning efficiently predicts CLNM for clinically node-negative PTC based on US images and clinical variables in an advantageous manner. Key points • A deep learning-based ensemble algorithm for predicting CLNM in PTC was developed. • Ultrasound AI analysis combined with clinical data has advantages in predicting CLNM. • Compared to all experts averaged, the DCNN model achieved higher test performance. Graphical Abstract

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chen完成签到 ,获得积分10
12秒前
chichenglin完成签到 ,获得积分0
12秒前
juliar完成签到 ,获得积分10
16秒前
121卡卡完成签到 ,获得积分10
27秒前
Kevin完成签到 ,获得积分10
32秒前
小药童应助科研通管家采纳,获得10
49秒前
望向天空的鱼完成签到 ,获得积分10
50秒前
平常的三问完成签到 ,获得积分10
59秒前
1分钟前
Alex-Song完成签到 ,获得积分0
1分钟前
1分钟前
徐凤年完成签到,获得积分10
1分钟前
tingalan完成签到,获得积分0
1分钟前
鱼儿游完成签到 ,获得积分10
2分钟前
2分钟前
chengmin完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
愤怒的念蕾完成签到,获得积分10
2分钟前
斯文败类应助小豹子采纳,获得10
2分钟前
KYTQQ完成签到 ,获得积分10
2分钟前
zhangsan完成签到,获得积分10
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
谭文完成签到 ,获得积分10
2分钟前
yanj520925完成签到,获得积分20
3分钟前
yanj520925发布了新的文献求助10
3分钟前
3分钟前
xiaoyi完成签到 ,获得积分10
3分钟前
清脆的靖仇完成签到,获得积分10
3分钟前
qaz111222完成签到 ,获得积分10
3分钟前
AliEmbark发布了新的文献求助30
4分钟前
shuwen完成签到 ,获得积分10
4分钟前
mojito完成签到 ,获得积分0
4分钟前
hugeyoung完成签到,获得积分10
4分钟前
arsenal完成签到 ,获得积分10
4分钟前
领导范儿应助科研通管家采纳,获得50
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
4分钟前
六一儿童节完成签到 ,获得积分0
5分钟前
x夏天完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555062
求助须知:如何正确求助?哪些是违规求助? 4639610
关于积分的说明 14656439
捐赠科研通 4581593
什么是DOI,文献DOI怎么找? 2512865
邀请新用户注册赠送积分活动 1487557
关于科研通互助平台的介绍 1458561