Deep learning predicts cervical lymph node metastasis in clinically node-negative papillary thyroid carcinoma

医学 神经组阅片室 放射科 甲状腺癌 试验装置 淋巴结 甲状腺癌 卷积神经网络 转移 阶段(地层学) 人工智能 癌症 甲状腺 内科学 计算机科学 神经学 古生物学 精神科 生物
作者
Liqiang Zhou,Shu‐E Zeng,Jianwei Xu,Wenzhi Lv,Dong Mei,Jia‐Jun Tu,Fan Jiang,Xin‐Wu Cui,Christoph F. Dietrich
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:14 (1) 被引量:9
标识
DOI:10.1186/s13244-023-01550-2
摘要

Abstract Objectives Precise determination of cervical lymph node metastasis (CLNM) involvement in patients with early-stage thyroid cancer is fairly significant for identifying appropriate cervical treatment options. However, it is almost impossible to directly judge lymph node metastasis based on the imaging information of early-stage thyroid cancer patients with clinically negative lymph nodes. Methods Preoperative US images (BMUS and CDFI) of 1031 clinically node negative PTC patients definitively diagnosed on pathology from two independent hospitals were divided into training set, validation set, internal test set, and external test set. An ensemble deep learning model based on ResNet-50 was built integrating clinical variables, BMUS, and CDFI images using a bagging classifier to predict metastasis of CLN. The final ensemble model performance was compared with expert interpretation. Results The ensemble deep convolutional neural network (DCNN) achieved high performance in predicting CLNM in the test sets examined, with area under the curve values of 0.86 (95% CI 0.78–0.94) for the internal test set and 0.77 (95% CI 0.68–0.87) for the external test set. Compared to all radiologists averaged, the ensemble DCNN model also exhibited improved performance in making predictions. For the external validation set, accuracy was 0.72 versus 0.59 ( p = 0.074), sensitivity was 0.75 versus 0.58 ( p = 0.039), and specificity was 0.69 versus 0.60 ( p = 0.078). Conclusions Deep learning can non-invasive predict CLNM for clinically node-negative PTC using conventional US imaging of thyroid cancer nodules and clinical variables in a multi-institutional dataset with superior accuracy, sensitivity, and specificity comparable to experts. Critical relevance statement Deep learning efficiently predicts CLNM for clinically node-negative PTC based on US images and clinical variables in an advantageous manner. Key points • A deep learning-based ensemble algorithm for predicting CLNM in PTC was developed. • Ultrasound AI analysis combined with clinical data has advantages in predicting CLNM. • Compared to all experts averaged, the DCNN model achieved higher test performance. Graphical Abstract

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dejavu发布了新的文献求助10
1秒前
1秒前
3秒前
桃七发布了新的文献求助10
3秒前
cactus完成签到 ,获得积分10
3秒前
3秒前
Yimi发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
李里哩发布了新的文献求助10
7秒前
涯光完成签到,获得积分10
7秒前
8秒前
小蘑菇发布了新的文献求助10
9秒前
10秒前
10秒前
oyasimi发布了新的文献求助10
10秒前
10秒前
司空雨筠完成签到,获得积分10
11秒前
11秒前
冷静蜗牛完成签到,获得积分10
12秒前
hrpppp发布了新的文献求助50
12秒前
12秒前
LHTTT发布了新的文献求助10
13秒前
大气的苠发布了新的文献求助10
13秒前
小马甲应助陳.采纳,获得10
14秒前
于豪杰发布了新的文献求助10
15秒前
oyasimi完成签到,获得积分10
15秒前
满意紫丝发布了新的文献求助10
15秒前
15秒前
冯前浪发布了新的文献求助10
16秒前
汉堡包应助Yimi采纳,获得10
16秒前
格拉a发布了新的文献求助10
17秒前
田様应助周繁采纳,获得10
17秒前
烟花应助relax采纳,获得30
17秒前
陈佳完成签到 ,获得积分10
17秒前
多看文献发布了新的文献求助10
18秒前
Singularity应助舒适笑容采纳,获得10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978