Deep learning predicts cervical lymph node metastasis in clinically node-negative papillary thyroid carcinoma

医学 神经组阅片室 放射科 甲状腺癌 试验装置 淋巴结 甲状腺癌 卷积神经网络 转移 阶段(地层学) 人工智能 癌症 甲状腺 内科学 计算机科学 神经学 古生物学 精神科 生物
作者
Liqiang Zhou,Shu‐E Zeng,Jianwei Xu,Wenzhi Lv,Dong Mei,Jia‐Jun Tu,Fan Jiang,Xin‐Wu Cui,Christoph F. Dietrich
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:14 (1) 被引量:9
标识
DOI:10.1186/s13244-023-01550-2
摘要

Abstract Objectives Precise determination of cervical lymph node metastasis (CLNM) involvement in patients with early-stage thyroid cancer is fairly significant for identifying appropriate cervical treatment options. However, it is almost impossible to directly judge lymph node metastasis based on the imaging information of early-stage thyroid cancer patients with clinically negative lymph nodes. Methods Preoperative US images (BMUS and CDFI) of 1031 clinically node negative PTC patients definitively diagnosed on pathology from two independent hospitals were divided into training set, validation set, internal test set, and external test set. An ensemble deep learning model based on ResNet-50 was built integrating clinical variables, BMUS, and CDFI images using a bagging classifier to predict metastasis of CLN. The final ensemble model performance was compared with expert interpretation. Results The ensemble deep convolutional neural network (DCNN) achieved high performance in predicting CLNM in the test sets examined, with area under the curve values of 0.86 (95% CI 0.78–0.94) for the internal test set and 0.77 (95% CI 0.68–0.87) for the external test set. Compared to all radiologists averaged, the ensemble DCNN model also exhibited improved performance in making predictions. For the external validation set, accuracy was 0.72 versus 0.59 ( p = 0.074), sensitivity was 0.75 versus 0.58 ( p = 0.039), and specificity was 0.69 versus 0.60 ( p = 0.078). Conclusions Deep learning can non-invasive predict CLNM for clinically node-negative PTC using conventional US imaging of thyroid cancer nodules and clinical variables in a multi-institutional dataset with superior accuracy, sensitivity, and specificity comparable to experts. Critical relevance statement Deep learning efficiently predicts CLNM for clinically node-negative PTC based on US images and clinical variables in an advantageous manner. Key points • A deep learning-based ensemble algorithm for predicting CLNM in PTC was developed. • Ultrasound AI analysis combined with clinical data has advantages in predicting CLNM. • Compared to all experts averaged, the DCNN model achieved higher test performance. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岁月如酒发布了新的文献求助10
刚刚
噜噜噜噜噜完成签到,获得积分10
刚刚
yookia应助一人一般采纳,获得10
刚刚
Hello应助张远幸采纳,获得10
1秒前
FireNow完成签到,获得积分10
1秒前
Muhammad发布了新的文献求助10
2秒前
restudy68完成签到,获得积分10
2秒前
情怀应助美满的天薇采纳,获得10
2秒前
我还不困完成签到,获得积分10
3秒前
4秒前
熠熠完成签到,获得积分10
4秒前
小王完成签到,获得积分10
4秒前
4秒前
xiuwen完成签到,获得积分10
5秒前
Jasper应助合适台灯采纳,获得10
5秒前
岁月如酒完成签到,获得积分10
6秒前
LLL完成签到,获得积分10
6秒前
6秒前
温柔的蛋挞完成签到,获得积分10
6秒前
quanjiazhi给quanjiazhi的求助进行了留言
6秒前
7秒前
法鱿科完成签到,获得积分10
7秒前
虚幻盼晴完成签到,获得积分10
7秒前
7秒前
zxm完成签到,获得积分10
9秒前
9秒前
ZT发布了新的文献求助10
9秒前
yyk完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
宇文青寒发布了新的文献求助10
10秒前
yyy完成签到,获得积分10
11秒前
APS发布了新的文献求助10
11秒前
猪猪玉完成签到 ,获得积分10
11秒前
11秒前
syangZ完成签到,获得积分10
11秒前
12秒前
Siavy完成签到,获得积分10
12秒前
喜悦茗发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953688
求助须知:如何正确求助?哪些是违规求助? 3499494
关于积分的说明 11095814
捐赠科研通 3230038
什么是DOI,文献DOI怎么找? 1785859
邀请新用户注册赠送积分活动 869602
科研通“疑难数据库(出版商)”最低求助积分说明 801479