Deep learning predicts cervical lymph node metastasis in clinically node-negative papillary thyroid carcinoma

医学 神经组阅片室 放射科 甲状腺癌 试验装置 淋巴结 甲状腺癌 卷积神经网络 转移 阶段(地层学) 人工智能 癌症 甲状腺 内科学 计算机科学 神经学 古生物学 精神科 生物
作者
Liqiang Zhou,Shu‐E Zeng,Jianwei Xu,Wenzhi Lv,Dong Mei,Jia‐Jun Tu,Fan Jiang,Xin‐Wu Cui,Christoph F. Dietrich
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:14 (1) 被引量:9
标识
DOI:10.1186/s13244-023-01550-2
摘要

Abstract Objectives Precise determination of cervical lymph node metastasis (CLNM) involvement in patients with early-stage thyroid cancer is fairly significant for identifying appropriate cervical treatment options. However, it is almost impossible to directly judge lymph node metastasis based on the imaging information of early-stage thyroid cancer patients with clinically negative lymph nodes. Methods Preoperative US images (BMUS and CDFI) of 1031 clinically node negative PTC patients definitively diagnosed on pathology from two independent hospitals were divided into training set, validation set, internal test set, and external test set. An ensemble deep learning model based on ResNet-50 was built integrating clinical variables, BMUS, and CDFI images using a bagging classifier to predict metastasis of CLN. The final ensemble model performance was compared with expert interpretation. Results The ensemble deep convolutional neural network (DCNN) achieved high performance in predicting CLNM in the test sets examined, with area under the curve values of 0.86 (95% CI 0.78–0.94) for the internal test set and 0.77 (95% CI 0.68–0.87) for the external test set. Compared to all radiologists averaged, the ensemble DCNN model also exhibited improved performance in making predictions. For the external validation set, accuracy was 0.72 versus 0.59 ( p = 0.074), sensitivity was 0.75 versus 0.58 ( p = 0.039), and specificity was 0.69 versus 0.60 ( p = 0.078). Conclusions Deep learning can non-invasive predict CLNM for clinically node-negative PTC using conventional US imaging of thyroid cancer nodules and clinical variables in a multi-institutional dataset with superior accuracy, sensitivity, and specificity comparable to experts. Critical relevance statement Deep learning efficiently predicts CLNM for clinically node-negative PTC based on US images and clinical variables in an advantageous manner. Key points • A deep learning-based ensemble algorithm for predicting CLNM in PTC was developed. • Ultrasound AI analysis combined with clinical data has advantages in predicting CLNM. • Compared to all experts averaged, the DCNN model achieved higher test performance. Graphical Abstract

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助zyc采纳,获得10
刚刚
指尖的阿里阿德涅完成签到,获得积分10
1秒前
张XX完成签到,获得积分10
1秒前
2秒前
软曲奇完成签到,获得积分10
2秒前
2秒前
华仔应助shishuang采纳,获得10
2秒前
英俊的铭应助忐忑的阑香采纳,获得10
3秒前
华仔应助缓慢的秋莲采纳,获得10
4秒前
领导范儿应助往好处想采纳,获得10
4秒前
4秒前
小豆包发布了新的文献求助10
4秒前
5秒前
肖婉婷完成签到,获得积分10
5秒前
BowieHuang应助SSY采纳,获得10
5秒前
稳中的豆沙包完成签到 ,获得积分10
6秒前
媛媛完成签到,获得积分10
6秒前
鲁木发布了新的文献求助10
7秒前
33完成签到,获得积分10
7秒前
chen01hang应助我不是BOB采纳,获得50
8秒前
李健应助彬彬发文章采纳,获得10
8秒前
Honahlee完成签到,获得积分10
8秒前
马明旋发布了新的文献求助20
9秒前
9秒前
10秒前
852应助strongfrog采纳,获得10
10秒前
科研通AI6应助清秀送终采纳,获得10
11秒前
11秒前
11秒前
11秒前
CipherSage应助TearMarks采纳,获得10
11秒前
silin完成签到,获得积分10
11秒前
小豆包完成签到,获得积分20
12秒前
xttju2014发布了新的文献求助10
12秒前
12秒前
super完成签到,获得积分20
13秒前
13秒前
Ak完成签到,获得积分0
13秒前
田小班发布了新的文献求助10
14秒前
Irene发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836