密度泛函理论
电荷(物理)
电荷密度
暖稠密物质
电子
物理
可扩展性
统计物理学
电子密度
计算物理学
计算机科学
量子力学
数据库
作者
Taoyuze Lv,Zhicheng Zhong,Yuhang Liang,Feng Li,Jun Huang,Rongkun Zheng
出处
期刊:Physical review
[American Physical Society]
日期:2023-12-20
卷期号:108 (23)
被引量:5
标识
DOI:10.1103/physrevb.108.235159
摘要
Electron charge density is a fundamental physical quantity, determining various properties of matter. In this study, we have proposed a deep learning model for accurate charge-density prediction. Our model naturally preserves physical symmetries and can be effectively trained from one-shot density functional theory calculation toward high accuracy. It captures detailed atomic environment information, ensuring accurate predictions of charge density across bulk, surface, molecules, and amorphous structures. This implementation exhibits excellent scalability and provides efficient analyses of material properties in large-scale condensed matter systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI