A deep learning fusion network trained with clinical and high-frequency ultrasound images in the multi-classification of skin diseases in comparison with dermatologists: a prospective and multicenter study

医学 卷积神经网络 接收机工作特性 人工智能 前瞻性队列研究 超声波 深度学习 医学诊断 医学物理学 皮肤病科 放射科 机器学习 病理 内科学 计算机科学
作者
An‐Qi Zhu,Qiao Wang,Yi-Lei Shi,Weiwei Ren,Xu Cao,Tiantian Ren,Jing Wang,Yaqin Zhang,Yi-Kang Sun,Xuewen Chen,Yongxian Lai,Na Ni,Y Z Chen,Jing-Liang Hu,Lichao Mou,Yujing Zhao,Yeqiang Liu,Liping Sun,Xiao Xiang Zhu,Hui‐Xiong Xu
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:67: 102391-102391 被引量:8
标识
DOI:10.1016/j.eclinm.2023.102391
摘要

BackgroundClinical appearance and high-frequency ultrasound (HFUS) are indispensable for diagnosing skin diseases by providing internal and external information. However, their complex combination brings challenges for primary care physicians and dermatologists. Thus, we developed a deep multimodal fusion network (DMFN) model combining analysis of clinical close-up and HFUS images for binary and multiclass classification in skin diseases.MethodsBetween Jan 10, 2017, and Dec 31, 2020, the DMFN model was trained and validated using 1269 close-ups and 11,852 HFUS images from 1351 skin lesions. The monomodal convolutional neural network (CNN) model was trained and validated with the same close-up images for comparison. Subsequently, we did a prospective and multicenter study in China. Both CNN models were tested prospectively on 422 cases from 4 hospitals and compared with the results from human raters (general practitioners, general dermatologists, and dermatologists specialized in HFUS). The performance of binary classification (benign vs. malignant) and multiclass classification (the specific diagnoses of 17 types of skin diseases) measured by the area under the receiver operating characteristic curve (AUC) were evaluated. This study is registered with www.chictr.org.cn (ChiCTR2300074765).FindingsThe performance of the DMFN model (AUC, 0.876) was superior to that of the monomodal CNN model (AUC, 0.697) in the binary classification (P = 0.0063), which was also better than that of the general practitioner (AUC, 0.651, P = 0.0025) and general dermatologists (AUC, 0.838; P = 0.0038). By integrating close-up and HFUS images, the DMFN model attained an almost identical performance in comparison to dermatologists (AUC, 0.876 vs. AUC, 0.891; P = 0.0080). For the multiclass classification, the DMFN model (AUC, 0.707) exhibited superior prediction performance compared with general dermatologists (AUC, 0.514; P = 0.0043) and dermatologists specialized in HFUS (AUC, 0.640; P = 0.0083), respectively. Compared to dermatologists specialized in HFUS, the DMFN model showed better or comparable performance in diagnosing 9 of the 17 skin diseases.InterpretationThe DMFN model combining analysis of clinical close-up and HFUS images exhibited satisfactory performance in the binary and multiclass classification compared with the dermatologists. It may be a valuable tool for general dermatologists and primary care providers.FundingThis work was supported in part by the National Natural Science Foundation of China and the Clinical research project of Shanghai Skin Disease Hospital.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
tly发布了新的文献求助10
3秒前
mengsizhen完成签到,获得积分20
3秒前
张新宇完成签到,获得积分10
4秒前
5秒前
5秒前
淼淼完成签到 ,获得积分10
6秒前
silent发布了新的文献求助10
6秒前
华仔应助真不叫阿呆采纳,获得10
7秒前
9秒前
10秒前
123zyx完成签到 ,获得积分10
10秒前
10秒前
浮游应助科研通管家采纳,获得10
11秒前
liao应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得30
12秒前
Akim应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
ccm应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
13秒前
liao应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
14秒前
14秒前
无花果应助科研通管家采纳,获得10
14秒前
ccm应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
桑榆2完成签到,获得积分10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457785
求助须知:如何正确求助?哪些是违规求助? 4564032
关于积分的说明 14293222
捐赠科研通 4488797
什么是DOI,文献DOI怎么找? 2458721
邀请新用户注册赠送积分活动 1448658
关于科研通互助平台的介绍 1424355