亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Read-First LSTM model: A new variant of long short term memory neural network for predicting solar radiation data

人工神经网络 期限(时间) 短时记忆 辐射 计算机科学 循环神经网络 短时记忆 人工智能 神经科学 心理学 物理 工作记忆 天文 认知 光学
作者
Mohammad Ehteram,Mahdie Afshari Nia,Fatemeh Panahi,Alireza Farrokhi
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:305: 118267-118267 被引量:19
标识
DOI:10.1016/j.enconman.2024.118267
摘要

The prediction of solar radiation data is important for countries to reduce their dependence on fossil fuels. Since the development of solar energy systems relies on an accurate prediction of solar radiation data, this study is conducted to predict monthly and daily solar radiation data and contribute to the development of solar energy systems. The current study develops a long short term memory (LSTM) model that can extract temporal features more efficiently than other deep learning models and predict solar radiation data. The new model is called the Read-first LSTM (RLSTM) model. The gate units of the LSTM model are independent, so they may not fully extract the features of long time series. Thus, the current study is conducted to address the limitations of the LSTM model for predicting solar data. The main innovation of this study is to develop an improved LSTM model to predict solar radiation data and establish a collaborative process between gates. While recent studies focus on optimizing LSTM parameters, the current research improves the efficiency of LSTM gates. Since there is a collaborative process between the gates of the RLSTM, correlation values ​​, and temporal features can be captured effectively. Climate data are used to predict solar radiation in two basins of Iran country, including the Kashan Plain and the Sefidorod Basin. The Boruta-Random Forest (BRF) feature selection algorithm was used to determine the best input scenario. The RLSTM model was compared with the LSTM model, recurrent neural network (RNN), radial basis function neural network (RBFNN), and Bidirectional LSTM (BILSTM) model. The RLSTM model could successfully predict the monthly solar radiation data in the Kashan plain. The RLSTM decreased the testing mean absolute error (MAE) of the other models by 5.8%-42%, respectively. The RLSTM model also accurately predicted daily data in the Sefidrood basin. The RLSTM improved the testing index of agreement (IA) of the BILSTM, LSTM, RNN, and RBFNN models by 5.2%-18%. The RLSTM enhanced the Nash–Sutcliffe efficiency of the other models by 5.2%-18%. The R2 values of RLSTM, BILST, LSTM, RNN, RBFNN, Prescott model, Ogelman model, Bakirci model, Rietveld model, and Almorox model were 0.9988, 0.9812, 0.9811, 0.9703, 0.9698, 0.9514, 0.9489, 0.9399, 0.9322, and 0.9284, respectively. The study demonstrates that RLSTM outperforms other models in predicting monthly and daily solar radiation data. The results provide insights into the limitations of existing LSTM models in predicting solar radiation and the importance of studying correlations between gate units. The study contributes to renewable energy development by providing a more reliable method for predicting solar radiation. The new model enhances the efficiency of empirical models for predicting solar radiation data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Trip_wyb发布了新的文献求助10
10秒前
heisa发布了新的文献求助10
17秒前
shhoing应助科研通管家采纳,获得10
22秒前
shhoing应助科研通管家采纳,获得10
22秒前
阿绫完成签到 ,获得积分10
22秒前
踏实的南琴完成签到 ,获得积分10
41秒前
heisa完成签到,获得积分10
42秒前
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
英勇的半蕾完成签到,获得积分20
2分钟前
十柒完成签到 ,获得积分10
2分钟前
大个应助新秀微博采纳,获得10
3分钟前
朱明完成签到 ,获得积分10
3分钟前
852应助科研通管家采纳,获得10
4分钟前
5分钟前
新秀微博发布了新的文献求助10
5分钟前
6分钟前
欢喜的文轩完成签到 ,获得积分10
6分钟前
6分钟前
落后的初柳完成签到,获得积分10
6分钟前
cllk发布了新的文献求助10
6分钟前
科研通AI6应助刘小艾采纳,获得10
7分钟前
我是老大应助cllk采纳,获得10
7分钟前
xiaoqian完成签到,获得积分10
7分钟前
7分钟前
cllk完成签到,获得积分10
7分钟前
亲情之友完成签到,获得积分10
8分钟前
8分钟前
亲情之友发布了新的文献求助10
8分钟前
Iron_five完成签到 ,获得积分0
8分钟前
刘小艾发布了新的文献求助10
8分钟前
MchemG应助科研通管家采纳,获得50
8分钟前
MchemG应助科研通管家采纳,获得50
8分钟前
张秉环完成签到 ,获得积分10
8分钟前
2317659604完成签到,获得积分10
8分钟前
望向天空的鱼完成签到 ,获得积分10
8分钟前
兴奋的嚣完成签到 ,获得积分10
9分钟前
wjh完成签到,获得积分10
10分钟前
shhoing应助科研通管家采纳,获得10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558517
求助须知:如何正确求助?哪些是违规求助? 4643605
关于积分的说明 14671250
捐赠科研通 4584908
什么是DOI,文献DOI怎么找? 2515238
邀请新用户注册赠送积分活动 1489315
关于科研通互助平台的介绍 1459954