Read-First LSTM model: A new variant of long short term memory neural network for predicting solar radiation data

人工神经网络 期限(时间) 短时记忆 辐射 计算机科学 循环神经网络 短时记忆 人工智能 神经科学 心理学 物理 工作记忆 天文 认知 光学
作者
Mohammad Ehteram,Mahdie Afshari Nia,Fatemeh Panahi,Alireza Farrokhi
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:305: 118267-118267 被引量:19
标识
DOI:10.1016/j.enconman.2024.118267
摘要

The prediction of solar radiation data is important for countries to reduce their dependence on fossil fuels. Since the development of solar energy systems relies on an accurate prediction of solar radiation data, this study is conducted to predict monthly and daily solar radiation data and contribute to the development of solar energy systems. The current study develops a long short term memory (LSTM) model that can extract temporal features more efficiently than other deep learning models and predict solar radiation data. The new model is called the Read-first LSTM (RLSTM) model. The gate units of the LSTM model are independent, so they may not fully extract the features of long time series. Thus, the current study is conducted to address the limitations of the LSTM model for predicting solar data. The main innovation of this study is to develop an improved LSTM model to predict solar radiation data and establish a collaborative process between gates. While recent studies focus on optimizing LSTM parameters, the current research improves the efficiency of LSTM gates. Since there is a collaborative process between the gates of the RLSTM, correlation values ​​, and temporal features can be captured effectively. Climate data are used to predict solar radiation in two basins of Iran country, including the Kashan Plain and the Sefidorod Basin. The Boruta-Random Forest (BRF) feature selection algorithm was used to determine the best input scenario. The RLSTM model was compared with the LSTM model, recurrent neural network (RNN), radial basis function neural network (RBFNN), and Bidirectional LSTM (BILSTM) model. The RLSTM model could successfully predict the monthly solar radiation data in the Kashan plain. The RLSTM decreased the testing mean absolute error (MAE) of the other models by 5.8%-42%, respectively. The RLSTM model also accurately predicted daily data in the Sefidrood basin. The RLSTM improved the testing index of agreement (IA) of the BILSTM, LSTM, RNN, and RBFNN models by 5.2%-18%. The RLSTM enhanced the Nash–Sutcliffe efficiency of the other models by 5.2%-18%. The R2 values of RLSTM, BILST, LSTM, RNN, RBFNN, Prescott model, Ogelman model, Bakirci model, Rietveld model, and Almorox model were 0.9988, 0.9812, 0.9811, 0.9703, 0.9698, 0.9514, 0.9489, 0.9399, 0.9322, and 0.9284, respectively. The study demonstrates that RLSTM outperforms other models in predicting monthly and daily solar radiation data. The results provide insights into the limitations of existing LSTM models in predicting solar radiation and the importance of studying correlations between gate units. The study contributes to renewable energy development by providing a more reliable method for predicting solar radiation. The new model enhances the efficiency of empirical models for predicting solar radiation data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
suleisusu应助无心的笑蓝采纳,获得20
1秒前
归尘应助科研通管家采纳,获得10
1秒前
归尘应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
在水一方应助大胆绮兰采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
归尘应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
归尘应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
doug完成签到,获得积分0
2秒前
归尘应助科研通管家采纳,获得10
2秒前
归尘应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助CY采纳,获得10
3秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
归尘应助科研通管家采纳,获得10
3秒前
归尘应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
wlp鹏完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
heniancheng完成签到 ,获得积分10
4秒前
4秒前
4秒前
打打应助科研通管家采纳,获得10
4秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965950
求助须知:如何正确求助?哪些是违规求助? 3511289
关于积分的说明 11157176
捐赠科研通 3245859
什么是DOI,文献DOI怎么找? 1793182
邀请新用户注册赠送积分活动 874245
科研通“疑难数据库(出版商)”最低求助积分说明 804286