Read-First LSTM model: A new variant of long short term memory neural network for predicting solar radiation data

人工神经网络 期限(时间) 短时记忆 辐射 计算机科学 循环神经网络 短时记忆 人工智能 神经科学 心理学 物理 工作记忆 天文 认知 光学
作者
Mohammad Ehteram,Mahdie Afshari Nia,Fatemeh Panahi,Alireza Farrokhi
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:305: 118267-118267 被引量:14
标识
DOI:10.1016/j.enconman.2024.118267
摘要

The prediction of solar radiation data is important for countries to reduce their dependence on fossil fuels. Since the development of solar energy systems relies on an accurate prediction of solar radiation data, this study is conducted to predict monthly and daily solar radiation data and contribute to the development of solar energy systems. The current study develops a long short term memory (LSTM) model that can extract temporal features more efficiently than other deep learning models and predict solar radiation data. The new model is called the Read-first LSTM (RLSTM) model. The gate units of the LSTM model are independent, so they may not fully extract the features of long time series. Thus, the current study is conducted to address the limitations of the LSTM model for predicting solar data. The main innovation of this study is to develop an improved LSTM model to predict solar radiation data and establish a collaborative process between gates. While recent studies focus on optimizing LSTM parameters, the current research improves the efficiency of LSTM gates. Since there is a collaborative process between the gates of the RLSTM, correlation values ​​, and temporal features can be captured effectively. Climate data are used to predict solar radiation in two basins of Iran country, including the Kashan Plain and the Sefidorod Basin. The Boruta-Random Forest (BRF) feature selection algorithm was used to determine the best input scenario. The RLSTM model was compared with the LSTM model, recurrent neural network (RNN), radial basis function neural network (RBFNN), and Bidirectional LSTM (BILSTM) model. The RLSTM model could successfully predict the monthly solar radiation data in the Kashan plain. The RLSTM decreased the testing mean absolute error (MAE) of the other models by 5.8%-42%, respectively. The RLSTM model also accurately predicted daily data in the Sefidrood basin. The RLSTM improved the testing index of agreement (IA) of the BILSTM, LSTM, RNN, and RBFNN models by 5.2%-18%. The RLSTM enhanced the Nash–Sutcliffe efficiency of the other models by 5.2%-18%. The R2 values of RLSTM, BILST, LSTM, RNN, RBFNN, Prescott model, Ogelman model, Bakirci model, Rietveld model, and Almorox model were 0.9988, 0.9812, 0.9811, 0.9703, 0.9698, 0.9514, 0.9489, 0.9399, 0.9322, and 0.9284, respectively. The study demonstrates that RLSTM outperforms other models in predicting monthly and daily solar radiation data. The results provide insights into the limitations of existing LSTM models in predicting solar radiation and the importance of studying correlations between gate units. The study contributes to renewable energy development by providing a more reliable method for predicting solar radiation. The new model enhances the efficiency of empirical models for predicting solar radiation data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子然完成签到,获得积分10
刚刚
1秒前
Xj发布了新的文献求助10
2秒前
大脸怪发布了新的文献求助10
3秒前
小马甲应助hhh采纳,获得30
3秒前
852应助iceice采纳,获得150
4秒前
4秒前
茉莉是个饱饱完成签到,获得积分10
4秒前
李爱国应助fagfagsf采纳,获得10
4秒前
孟伽娜发布了新的文献求助10
5秒前
5秒前
5秒前
Liekkas发布了新的文献求助10
6秒前
6秒前
7秒前
露宝发布了新的文献求助10
7秒前
bofu发布了新的文献求助20
8秒前
欢喜念双发布了新的文献求助10
8秒前
漂亮的觅波完成签到,获得积分10
8秒前
细心蚂蚁发布了新的文献求助10
8秒前
科研通AI5应助淡淡红茶采纳,获得50
8秒前
8秒前
大模型应助孙玉杰采纳,获得10
9秒前
刘先生发布了新的文献求助10
9秒前
10秒前
anan完成签到,获得积分10
11秒前
11秒前
迷路易形发布了新的文献求助10
11秒前
了晨发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
13秒前
Xj完成签到,获得积分20
14秒前
15秒前
bofu发布了新的文献求助10
15秒前
Skywalker发布了新的文献求助10
16秒前
科研通AI5应助细心蚂蚁采纳,获得10
16秒前
16秒前
稳重的闭月完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3581993
求助须知:如何正确求助?哪些是违规求助? 3151527
关于积分的说明 9488103
捐赠科研通 2853644
什么是DOI,文献DOI怎么找? 1568778
邀请新用户注册赠送积分活动 734779
科研通“疑难数据库(出版商)”最低求助积分说明 720809