已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Read-First LSTM model: A new variant of long short term memory neural network for predicting solar radiation data

人工神经网络 期限(时间) 短时记忆 辐射 计算机科学 循环神经网络 短时记忆 人工智能 神经科学 心理学 物理 工作记忆 天文 认知 光学
作者
Mohammad Ehteram,Mahdie Afshari Nia,Fatemeh Panahi,Alireza Farrokhi
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:305: 118267-118267 被引量:19
标识
DOI:10.1016/j.enconman.2024.118267
摘要

The prediction of solar radiation data is important for countries to reduce their dependence on fossil fuels. Since the development of solar energy systems relies on an accurate prediction of solar radiation data, this study is conducted to predict monthly and daily solar radiation data and contribute to the development of solar energy systems. The current study develops a long short term memory (LSTM) model that can extract temporal features more efficiently than other deep learning models and predict solar radiation data. The new model is called the Read-first LSTM (RLSTM) model. The gate units of the LSTM model are independent, so they may not fully extract the features of long time series. Thus, the current study is conducted to address the limitations of the LSTM model for predicting solar data. The main innovation of this study is to develop an improved LSTM model to predict solar radiation data and establish a collaborative process between gates. While recent studies focus on optimizing LSTM parameters, the current research improves the efficiency of LSTM gates. Since there is a collaborative process between the gates of the RLSTM, correlation values ​​, and temporal features can be captured effectively. Climate data are used to predict solar radiation in two basins of Iran country, including the Kashan Plain and the Sefidorod Basin. The Boruta-Random Forest (BRF) feature selection algorithm was used to determine the best input scenario. The RLSTM model was compared with the LSTM model, recurrent neural network (RNN), radial basis function neural network (RBFNN), and Bidirectional LSTM (BILSTM) model. The RLSTM model could successfully predict the monthly solar radiation data in the Kashan plain. The RLSTM decreased the testing mean absolute error (MAE) of the other models by 5.8%-42%, respectively. The RLSTM model also accurately predicted daily data in the Sefidrood basin. The RLSTM improved the testing index of agreement (IA) of the BILSTM, LSTM, RNN, and RBFNN models by 5.2%-18%. The RLSTM enhanced the Nash–Sutcliffe efficiency of the other models by 5.2%-18%. The R2 values of RLSTM, BILST, LSTM, RNN, RBFNN, Prescott model, Ogelman model, Bakirci model, Rietveld model, and Almorox model were 0.9988, 0.9812, 0.9811, 0.9703, 0.9698, 0.9514, 0.9489, 0.9399, 0.9322, and 0.9284, respectively. The study demonstrates that RLSTM outperforms other models in predicting monthly and daily solar radiation data. The results provide insights into the limitations of existing LSTM models in predicting solar radiation and the importance of studying correlations between gate units. The study contributes to renewable energy development by providing a more reliable method for predicting solar radiation. The new model enhances the efficiency of empirical models for predicting solar radiation data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jiayou完成签到,获得积分10
1秒前
彭于晏应助keepory86采纳,获得30
1秒前
坐雨赏花完成签到 ,获得积分10
5秒前
贾靖涵发布了新的文献求助10
5秒前
5秒前
18485649437发布了新的文献求助10
6秒前
青葱鱼块完成签到 ,获得积分10
6秒前
7秒前
安详的夜春完成签到 ,获得积分10
7秒前
shame完成签到 ,获得积分10
8秒前
星辰大海应助布吉岛采纳,获得10
8秒前
轻松的小天鹅完成签到,获得积分10
8秒前
执着艳完成签到 ,获得积分10
9秒前
qqazws888完成签到 ,获得积分10
11秒前
怡然的复天完成签到,获得积分10
11秒前
哈密哈密完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
XinEr完成签到 ,获得积分10
13秒前
啦啦啦完成签到,获得积分10
13秒前
15秒前
15秒前
Retromer完成签到,获得积分10
16秒前
悄悄完成签到 ,获得积分10
16秒前
whoknowsname完成签到,获得积分10
17秒前
ZY发布了新的文献求助10
17秒前
美好善斓完成签到 ,获得积分10
18秒前
19秒前
乌拉拉完成签到,获得积分20
19秒前
陆沉完成签到,获得积分10
19秒前
20秒前
杨雪妮完成签到 ,获得积分10
20秒前
无无发布了新的文献求助10
22秒前
uniquedl完成签到 ,获得积分10
22秒前
科研通AI6.1应助koalafish采纳,获得30
22秒前
寻道图强完成签到,获得积分0
23秒前
23秒前
23秒前
23秒前
斯文无敌完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771975
求助须知:如何正确求助?哪些是违规求助? 5594820
关于积分的说明 15428720
捐赠科研通 4905144
什么是DOI,文献DOI怎么找? 2639238
邀请新用户注册赠送积分活动 1587134
关于科研通互助平台的介绍 1542004