Read-First LSTM model: A new variant of long short term memory neural network for predicting solar radiation data

人工神经网络 期限(时间) 短时记忆 辐射 计算机科学 循环神经网络 短时记忆 人工智能 神经科学 心理学 物理 工作记忆 天文 认知 光学
作者
Mohammad Ehteram,Mahdie Afshari Nia,Fatemeh Panahi,Alireza Farrokhi
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:305: 118267-118267 被引量:19
标识
DOI:10.1016/j.enconman.2024.118267
摘要

The prediction of solar radiation data is important for countries to reduce their dependence on fossil fuels. Since the development of solar energy systems relies on an accurate prediction of solar radiation data, this study is conducted to predict monthly and daily solar radiation data and contribute to the development of solar energy systems. The current study develops a long short term memory (LSTM) model that can extract temporal features more efficiently than other deep learning models and predict solar radiation data. The new model is called the Read-first LSTM (RLSTM) model. The gate units of the LSTM model are independent, so they may not fully extract the features of long time series. Thus, the current study is conducted to address the limitations of the LSTM model for predicting solar data. The main innovation of this study is to develop an improved LSTM model to predict solar radiation data and establish a collaborative process between gates. While recent studies focus on optimizing LSTM parameters, the current research improves the efficiency of LSTM gates. Since there is a collaborative process between the gates of the RLSTM, correlation values ​​, and temporal features can be captured effectively. Climate data are used to predict solar radiation in two basins of Iran country, including the Kashan Plain and the Sefidorod Basin. The Boruta-Random Forest (BRF) feature selection algorithm was used to determine the best input scenario. The RLSTM model was compared with the LSTM model, recurrent neural network (RNN), radial basis function neural network (RBFNN), and Bidirectional LSTM (BILSTM) model. The RLSTM model could successfully predict the monthly solar radiation data in the Kashan plain. The RLSTM decreased the testing mean absolute error (MAE) of the other models by 5.8%-42%, respectively. The RLSTM model also accurately predicted daily data in the Sefidrood basin. The RLSTM improved the testing index of agreement (IA) of the BILSTM, LSTM, RNN, and RBFNN models by 5.2%-18%. The RLSTM enhanced the Nash–Sutcliffe efficiency of the other models by 5.2%-18%. The R2 values of RLSTM, BILST, LSTM, RNN, RBFNN, Prescott model, Ogelman model, Bakirci model, Rietveld model, and Almorox model were 0.9988, 0.9812, 0.9811, 0.9703, 0.9698, 0.9514, 0.9489, 0.9399, 0.9322, and 0.9284, respectively. The study demonstrates that RLSTM outperforms other models in predicting monthly and daily solar radiation data. The results provide insights into the limitations of existing LSTM models in predicting solar radiation and the importance of studying correlations between gate units. The study contributes to renewable energy development by providing a more reliable method for predicting solar radiation. The new model enhances the efficiency of empirical models for predicting solar radiation data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狗狗明明完成签到,获得积分20
1秒前
柴郡喵完成签到,获得积分10
1秒前
Emily完成签到,获得积分10
1秒前
wmm完成签到,获得积分10
1秒前
吐丝麵包完成签到 ,获得积分10
2秒前
善学以致用应助认真代曼采纳,获得10
3秒前
zhaolihua发布了新的文献求助20
4秒前
潜水的土拨鼠完成签到,获得积分10
4秒前
合适饼干完成签到 ,获得积分10
4秒前
5秒前
lyj334完成签到,获得积分10
5秒前
Yunxia完成签到,获得积分10
5秒前
5t5完成签到 ,获得积分10
6秒前
英姑应助xzn1123采纳,获得30
6秒前
悦风完成签到,获得积分10
6秒前
研友_CCQ_M完成签到,获得积分10
7秒前
Nuyoah完成签到,获得积分10
7秒前
鞠晓蕾完成签到,获得积分10
7秒前
趁热拿铁完成签到 ,获得积分10
7秒前
fhkq完成签到,获得积分10
8秒前
miaomiao完成签到,获得积分10
8秒前
脆脆鲨完成签到,获得积分10
8秒前
霭祢完成签到 ,获得积分10
9秒前
小摩尔完成签到 ,获得积分10
9秒前
Huang完成签到 ,获得积分10
10秒前
勤劳宛菡完成签到 ,获得积分10
10秒前
LCL发布了新的文献求助10
11秒前
ira发布了新的文献求助10
11秒前
Ray-Q完成签到,获得积分10
11秒前
Nuyoah完成签到 ,获得积分10
12秒前
ColdSunWu完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助100
12秒前
小鱼完成签到,获得积分10
13秒前
酸菜萌萌鱼完成签到,获得积分10
13秒前
收声发布了新的文献求助10
13秒前
Z+V完成签到,获得积分20
14秒前
桃子完成签到 ,获得积分10
14秒前
标致的冷梅完成签到,获得积分10
15秒前
无限的千凝完成签到 ,获得积分10
15秒前
听汐完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067126
求助须知:如何正确求助?哪些是违规求助? 4288967
关于积分的说明 13361468
捐赠科研通 4108496
什么是DOI,文献DOI怎么找? 2249751
邀请新用户注册赠送积分活动 1255144
关于科研通互助平台的介绍 1187650