非线性系统
饱和(图论)
共识
李雅普诺夫函数
订单(交换)
多智能体系统
图论
Lyapunov稳定性
图形
不变(物理)
控制理论(社会学)
群(周期表)
计算机科学
数学
数学优化
应用数学
物理
离散数学
人工智能
组合数学
控制(管理)
量子力学
财务
经济
数学物理
作者
Xiong‐Hui Tang,Xisheng Zhan,Ling‐Yan Wang,Jie Wu,Huaicheng Yan
摘要
Abstract This paper investigates the group consensus of hybrid‐order heterogeneous multi‐agent systems (MASs) consisting of first‐order linear agents and second‐order nonlinear agents with and without input saturation. First, group consensus algorithms are introduced. Then, by using various mathematical methods, including the graph theory, LaSalle invariant set principle, and Lyapunov stability theory, it is shown that hybrid‐order heterogeneous MASs can reach group consensus if sufficient conditions are satisfied. Further, the simulations are conducted to verify the theoretical results. Finally, the simulation results demonstrate that hybrid‐order heterogeneous MASs with and without input saturation can achieve the group consensus.
科研通智能强力驱动
Strongly Powered by AbleSci AI