Enhancing Metabolome Annotation by Electron Impact Excitation of Ions from Organics-Molecular Networking

代谢组 化学 代谢物 代谢组学 注释 串联质谱法 质谱法 碎片(计算) 电子电离 NIST公司 计算生物学 分析化学(期刊) 色谱法 离子 生物化学 生物信息学 计算机科学 电离 有机化学 操作系统 自然语言处理 生物
作者
Xinxin Wang,Xiaoshan Sun,Fubo Wang,Chunmeng Wei,Fujian Zheng,Xiuqiong Zhang,Xinjie Zhao,Chunxia Zhao,Xin Lu,Guowang Xu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (4): 1444-1453 被引量:2
标识
DOI:10.1021/acs.analchem.3c03443
摘要

Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is widely used in untargeted metabolomics, but large-scale and high-accuracy metabolite annotation remains a challenge due to the complex nature of biological samples. Recently introduced electron impact excitation of ions from organics (EIEIO) fragmentation can generate information-rich fragment ions. However, effective utilization of EIEIO tandem mass spectrometry (MS/MS) is hindered by the lack of reference spectral databases. Molecular networking (MN) shows great promise in large-scale metabolome annotation, but enhancing the correlation between spectral and structural similarity is essential to fully exploring the benefits of MN annotation. In this study, a novel approach was proposed to enhance metabolite annotation in untargeted metabolomics using EIEIO and MN. MS/MS spectra were acquired in EIEIO and collision-induced dissociation (CID) modes for over 400 reference metabolites. The study revealed a stronger correlation between the EIEIO spectra and metabolite structure. Moreover, the EIEIO spectral network outperformed the CID spectral network in capturing structural analogues. The annotation performance of the structural similarity network for untargeted LC-MS/MS was evaluated. For the spiked NIST SRM 1950 human plasma, the annotation coverage and accuracy were 72.94 and 74.19%, respectively. A total of 2337 metabolite features were successfully annotated in NIST SRM 1950 human plasma, which was twice that of LC-CID MS/MS. Finally, the developed method was applied to investigate prostate cancer. A total of 87 significantly differential metabolites were annotated. This study combining EIEIO and MN makes a valuable contribution to improving metabolome annotation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
憨憨鱼发布了新的文献求助10
2秒前
霸气水儿完成签到,获得积分10
3秒前
4秒前
hins发布了新的文献求助10
6秒前
乐乐应助Dceer采纳,获得10
6秒前
飘落完成签到,获得积分10
7秒前
9秒前
10秒前
学习通完成签到,获得积分10
11秒前
是谁在摸鱼完成签到 ,获得积分10
11秒前
莫离完成签到,获得积分20
11秒前
12秒前
飘落发布了新的文献求助10
13秒前
13秒前
qp完成签到,获得积分10
15秒前
EDDY完成签到,获得积分10
16秒前
Lucas应助莫离采纳,获得10
16秒前
gan发布了新的文献求助10
17秒前
17秒前
科研通AI2S应助霸气水儿采纳,获得10
21秒前
边港洋发布了新的文献求助10
21秒前
FOODHUA发布了新的文献求助10
22秒前
隐形曼青应助酷酷的山雁采纳,获得10
24秒前
愤怒的紫完成签到,获得积分10
25秒前
26秒前
可可可刻完成签到,获得积分20
27秒前
愤怒的紫发布了新的文献求助10
28秒前
0510a完成签到 ,获得积分10
29秒前
Ava应助zyj采纳,获得30
29秒前
wwww0wwww完成签到,获得积分10
29秒前
Orange应助uu采纳,获得10
29秒前
30秒前
SilentStorm发布了新的文献求助10
30秒前
学习通发布了新的文献求助10
30秒前
嘉二完成签到,获得积分10
31秒前
浩然完成签到,获得积分10
33秒前
SilentStorm完成签到,获得积分10
34秒前
35秒前
小豆芽发布了新的文献求助10
35秒前
李健的小迷弟应助石页采纳,获得10
36秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163904
求助须知:如何正确求助?哪些是违规求助? 2814758
关于积分的说明 7906420
捐赠科研通 2474340
什么是DOI,文献DOI怎么找? 1317459
科研通“疑难数据库(出版商)”最低求助积分说明 631769
版权声明 602198