Evolutionary Computation in the Era of Large Language Model: Survey and Roadmap

计算机科学 数据科学 人工智能 平行线 领域(数学分析) 分类 软件工程 管理科学 工程类 数学 机械工程 数学分析
作者
Xingyu Wu,S. L. Wu,Jung-Shyr Wu,Feng Li,Kay Chen Tan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2401.10034
摘要

Large Language Models (LLMs), built upon Transformer-based architectures with massive pretraining on diverse data, have not only revolutionized natural language processing but also extended their prowess to various domains, marking a significant stride towards artificial general intelligence. The interplay between LLMs and Evolutionary Algorithms (EAs), despite differing in objectives and methodologies, reveals intriguing parallels, especially in their shared optimization nature, black-box characteristics, and proficiency in handling complex problems. Meanwhile, EA can not only provide an optimization framework for LLM's further enhancement under black-box settings but also empower LLM with flexible global search and iterative mechanism in applications. On the other hand, LLM's abundant domain knowledge enables EA to perform smarter searches, while its text processing capability assist in deploying EA across various tasks. Based on their complementary advantages, this paper presents a comprehensive review and forward-looking roadmap, categorizing their mutual inspiration into LLM-enhanced evolutionary optimization and EA-enhanced LLM. Some integrated synergy methods are further introduced to exemplify the amalgamation of LLMs and EAs in various application scenarios, including neural architecture search, code generation, software engineering, and text generation. As the first comprehensive review specifically focused on the EA research in the era of LLMs, this paper provides a foundational stepping stone for understanding and harnessing the collaborative potential of LLMs and EAs. By presenting a comprehensive review, categorization, and critical analysis, we contribute to the ongoing discourse on the cross-disciplinary study of these two powerful paradigms. The identified challenges and future directions offer guidance to unlock the full potential of this innovative collaboration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vira发布了新的文献求助10
刚刚
fsdgbg发布了新的文献求助10
1秒前
我很懵逼发布了新的文献求助10
1秒前
1秒前
慕青应助PANYIAO采纳,获得10
1秒前
炸毛可乐完成签到,获得积分20
2秒前
Ava应助Iridesent0v0采纳,获得10
3秒前
3秒前
沉默鲜花完成签到,获得积分10
3秒前
3秒前
anti1988发布了新的文献求助10
3秒前
三三得九完成签到 ,获得积分10
4秒前
森ok发布了新的文献求助10
4秒前
Owen应助西班牙拿铁采纳,获得10
4秒前
4秒前
lalala应助影子采纳,获得10
5秒前
Cassiel完成签到,获得积分20
6秒前
科研人应助忧郁老头采纳,获得10
6秒前
8秒前
8秒前
9秒前
斯文败类应助欧阳铭采纳,获得10
9秒前
冷静靖荷应助陈M雯采纳,获得10
10秒前
WKK完成签到,获得积分10
10秒前
11秒前
吕佩昌发布了新的文献求助10
13秒前
00粥发布了新的文献求助10
13秒前
14秒前
思源应助fsdgbg采纳,获得10
14秒前
Owen应助anti1988采纳,获得10
15秒前
JamesPei应助森ok采纳,获得10
15秒前
16秒前
17秒前
18秒前
烟花应助个性的斑马采纳,获得10
20秒前
翁若翠发布了新的文献求助10
20秒前
爆米花应助tony采纳,获得10
20秒前
感动清炎完成签到,获得积分10
20秒前
mm发布了新的文献求助10
21秒前
22秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482810
求助须知:如何正确求助?哪些是违规求助? 3072319
关于积分的说明 9126371
捐赠科研通 2764054
什么是DOI,文献DOI怎么找? 1516797
邀请新用户注册赠送积分活动 701797
科研通“疑难数据库(出版商)”最低求助积分说明 700690