A novel YOLOv8-GAM-Wise-IoU model for automated detection of bridge surface cracks

桥(图论) 计算机科学 正确性 交叉口(航空) 人工智能 卷积神经网络 灵活性(工程) 功能(生物学) 财产(哲学) 目视检查 一般化 工程类 算法 运输工程 医学 进化生物学 数学 生物 统计 认识论 内科学 数学分析 哲学
作者
Chenqin Xiong,Tarek Zayed,Eslam Mohammed Abdelkader
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:414: 135025-135025 被引量:55
标识
DOI:10.1016/j.conbuildmat.2024.135025
摘要

Hong Kong, among the world's most densely populated cities, has witnessed rapid growth in traffic volume, resulting in increased traffic density and vehicle loads. Regular bridge inspections are imperative to ensure human safety and safeguard property. However, conventional visual inspection methods are highly criticized for their critical limitations such as inaccuracy, subjectivity, labor-intensiveness, tediousness, and hazardousness. Cracks are regarded as the most prevalent type of defects encountered during inspection of reinforced concrete bridges. Automated detection of bridge surface cracks is a quite challenging and hectic task due to their random characteristics and usual in complex and non-uniform background textures. Presence. In light of foregoing, this paper proposes a novel computer vision model for concrete bridge crack detection in an attempt to circumvent the critical deficiencies of manual visual inspection. The developed model is envisioned on the use of you only look once version 8 (YOLOv8) architecture, which is cited as one of the most advanced convolutional neural networks structures for multi-scale object detection. Comprising three fundamental components - the backbone, neck, and head, this model introduces the concept of a decoupled head, segregating it into a detection head and a classification head. This design empowers the model with greater flexibility in handling diverse tasks. Moreover, the incorporation of the global attention module (GAM) and the wise intersection over union (IoU) loss function serves to further boost detection correctness of the developed model and amplify its generalization ability. The developed YOLOv8-GAM-Wise-IoU is compared against some of the widely acknowledged one-stage and two-stage deep learning models using the evaluation metrics of precision, recall, F1-score, mean average precision (mAP) and IoU. It outperformed them accomplishing testing precision, recall, F1-score, mAP50, mAP50–95 and mAP75 of 97.4%, 94.9%, 0.96, 98.1%, 76.2%, and 97.8%, respectively. It is also observed that developed model maintains a modest size of 93.20 M resulting in diminishing the computational cost of training and inference processes. This makes it highly deployable in various crack detection pertaining applications. It can be argued that the developed model can contribute notably to the preservation of safety and integrity of reinforced concrete bridges in Hong Kong environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鸡腿战神完成签到,获得积分10
1秒前
1秒前
2秒前
轩哥哥完成签到,获得积分10
3秒前
Bupivacaine发布了新的文献求助10
3秒前
科研通AI6应助迅速如柏采纳,获得10
3秒前
淡淡宇宇宝宝完成签到,获得积分10
3秒前
安静的水发布了新的文献求助10
4秒前
5秒前
所所应助赵俊平采纳,获得10
6秒前
xxfsx应助安静的慕凝采纳,获得10
6秒前
小付发布了新的文献求助10
7秒前
圩垸发布了新的文献求助20
7秒前
棱擎1号完成签到 ,获得积分10
7秒前
8秒前
科研通AI6应助飞天大南瓜采纳,获得10
8秒前
8秒前
10秒前
迷路藏今发布了新的文献求助10
11秒前
11秒前
今后应助Bupivacaine采纳,获得10
11秒前
12秒前
Zhao发布了新的文献求助10
12秒前
ll发布了新的文献求助10
12秒前
12秒前
12秒前
FashionBoy应助小付采纳,获得10
14秒前
ylyla发布了新的文献求助10
14秒前
冷曦完成签到 ,获得积分10
14秒前
HHSQ1发布了新的文献求助30
15秒前
Heisenberg应助王伟采纳,获得10
15秒前
15秒前
16秒前
111发布了新的文献求助10
16秒前
安静的水完成签到,获得积分10
16秒前
16秒前
wan发布了新的文献求助10
17秒前
18秒前
18秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457292
求助须知:如何正确求助?哪些是违规求助? 4563793
关于积分的说明 14291406
捐赠科研通 4488476
什么是DOI,文献DOI怎么找? 2458514
邀请新用户注册赠送积分活动 1448579
关于科研通互助平台的介绍 1424214