A novel YOLOv8-GAM-Wise-IoU model for automated detection of bridge surface cracks

桥(图论) 计算机科学 正确性 交叉口(航空) 人工智能 卷积神经网络 灵活性(工程) 功能(生物学) 财产(哲学) 目视检查 一般化 工程类 算法 运输工程 医学 进化生物学 数学 生物 统计 认识论 内科学 数学分析 哲学
作者
Chenqin Xiong,Tarek Zayed,Eslam Mohammed Abdelkader
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:414: 135025-135025 被引量:55
标识
DOI:10.1016/j.conbuildmat.2024.135025
摘要

Hong Kong, among the world's most densely populated cities, has witnessed rapid growth in traffic volume, resulting in increased traffic density and vehicle loads. Regular bridge inspections are imperative to ensure human safety and safeguard property. However, conventional visual inspection methods are highly criticized for their critical limitations such as inaccuracy, subjectivity, labor-intensiveness, tediousness, and hazardousness. Cracks are regarded as the most prevalent type of defects encountered during inspection of reinforced concrete bridges. Automated detection of bridge surface cracks is a quite challenging and hectic task due to their random characteristics and usual in complex and non-uniform background textures. Presence. In light of foregoing, this paper proposes a novel computer vision model for concrete bridge crack detection in an attempt to circumvent the critical deficiencies of manual visual inspection. The developed model is envisioned on the use of you only look once version 8 (YOLOv8) architecture, which is cited as one of the most advanced convolutional neural networks structures for multi-scale object detection. Comprising three fundamental components - the backbone, neck, and head, this model introduces the concept of a decoupled head, segregating it into a detection head and a classification head. This design empowers the model with greater flexibility in handling diverse tasks. Moreover, the incorporation of the global attention module (GAM) and the wise intersection over union (IoU) loss function serves to further boost detection correctness of the developed model and amplify its generalization ability. The developed YOLOv8-GAM-Wise-IoU is compared against some of the widely acknowledged one-stage and two-stage deep learning models using the evaluation metrics of precision, recall, F1-score, mean average precision (mAP) and IoU. It outperformed them accomplishing testing precision, recall, F1-score, mAP50, mAP50–95 and mAP75 of 97.4%, 94.9%, 0.96, 98.1%, 76.2%, and 97.8%, respectively. It is also observed that developed model maintains a modest size of 93.20 M resulting in diminishing the computational cost of training and inference processes. This makes it highly deployable in various crack detection pertaining applications. It can be argued that the developed model can contribute notably to the preservation of safety and integrity of reinforced concrete bridges in Hong Kong environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小滕发布了新的文献求助10
1秒前
2秒前
ljs完成签到,获得积分10
2秒前
morgenlefay发布了新的文献求助10
3秒前
7秒前
8秒前
8秒前
阿白完成签到 ,获得积分10
12秒前
渣渣XM发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
无花果应助milewangzi采纳,获得10
18秒前
薛娥完成签到,获得积分10
19秒前
CodeCraft应助渣渣XM采纳,获得10
20秒前
20秒前
mmm发布了新的文献求助10
21秒前
hzwyyds应助感性的梦露采纳,获得20
21秒前
May应助Anoxia采纳,获得50
22秒前
huiliang应助Anoxia采纳,获得50
22秒前
大模型应助可爱的柜子采纳,获得10
22秒前
23秒前
25秒前
bkagyin应助yehuaiyu采纳,获得10
26秒前
壮观惋庭完成签到,获得积分10
26秒前
文静千凡发布了新的文献求助10
27秒前
赘婿应助小滕采纳,获得10
27秒前
天天快乐应助Moshiqi688采纳,获得10
28秒前
嘻嘻哈哈发布了新的文献求助10
28秒前
lewis_xl完成签到,获得积分10
29秒前
29秒前
30秒前
30秒前
yidi01完成签到,获得积分10
32秒前
kuu发布了新的文献求助10
33秒前
35秒前
洋洋发布了新的文献求助10
36秒前
milewangzi发布了新的文献求助10
36秒前
小豆豆完成签到,获得积分10
37秒前
yehuaiyu发布了新的文献求助10
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497916
关于积分的说明 11089399
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868979
科研通“疑难数据库(出版商)”最低求助积分说明 801309