已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel YOLOv8-GAM-Wise-IoU model for automated detection of bridge surface cracks

桥(图论) 计算机科学 正确性 交叉口(航空) 人工智能 卷积神经网络 灵活性(工程) 功能(生物学) 财产(哲学) 目视检查 一般化 工程类 算法 运输工程 医学 进化生物学 数学 生物 统计 认识论 内科学 数学分析 哲学
作者
Chenqin Xiong,Tarek Zayed,Eslam Mohammed Abdelkader
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:414: 135025-135025 被引量:19
标识
DOI:10.1016/j.conbuildmat.2024.135025
摘要

Hong Kong, among the world's most densely populated cities, has witnessed rapid growth in traffic volume, resulting in increased traffic density and vehicle loads. Regular bridge inspections are imperative to ensure human safety and safeguard property. However, conventional visual inspection methods are highly criticized for their critical limitations such as inaccuracy, subjectivity, labor-intensiveness, tediousness, and hazardousness. Cracks are regarded as the most prevalent type of defects encountered during inspection of reinforced concrete bridges. Automated detection of bridge surface cracks is a quite challenging and hectic task due to their random characteristics and usual in complex and non-uniform background textures. Presence. In light of foregoing, this paper proposes a novel computer vision model for concrete bridge crack detection in an attempt to circumvent the critical deficiencies of manual visual inspection. The developed model is envisioned on the use of you only look once version 8 (YOLOv8) architecture, which is cited as one of the most advanced convolutional neural networks structures for multi-scale object detection. Comprising three fundamental components - the backbone, neck, and head, this model introduces the concept of a decoupled head, segregating it into a detection head and a classification head. This design empowers the model with greater flexibility in handling diverse tasks. Moreover, the incorporation of the global attention module (GAM) and the wise intersection over union (IoU) loss function serves to further boost detection correctness of the developed model and amplify its generalization ability. The developed YOLOv8-GAM-Wise-IoU is compared against some of the widely acknowledged one-stage and two-stage deep learning models using the evaluation metrics of precision, recall, F1-score, mean average precision (mAP) and IoU. It outperformed them accomplishing testing precision, recall, F1-score, mAP50, mAP50–95 and mAP75 of 97.4%, 94.9%, 0.96, 98.1%, 76.2%, and 97.8%, respectively. It is also observed that developed model maintains a modest size of 93.20 M resulting in diminishing the computational cost of training and inference processes. This makes it highly deployable in various crack detection pertaining applications. It can be argued that the developed model can contribute notably to the preservation of safety and integrity of reinforced concrete bridges in Hong Kong environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
小团月完成签到 ,获得积分10
4秒前
6秒前
zhangxr发布了新的文献求助10
9秒前
JY应助科研通管家采纳,获得10
12秒前
寻道图强应助科研通管家采纳,获得30
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
小路完成签到,获得积分10
16秒前
淡定思远完成签到 ,获得积分10
18秒前
20秒前
solar@2030发布了新的文献求助10
23秒前
24秒前
orixero应助飞快的语山采纳,获得10
26秒前
solar@2030完成签到,获得积分20
29秒前
30秒前
35秒前
辛勤晓旋完成签到,获得积分10
36秒前
TTT0530发布了新的文献求助10
36秒前
37秒前
Yifan2024完成签到,获得积分10
39秒前
40秒前
上官若男应助Ni采纳,获得10
40秒前
羽绒发布了新的文献求助10
41秒前
litieniu完成签到 ,获得积分10
41秒前
43秒前
BBC完成签到 ,获得积分20
43秒前
搞怪的绿草完成签到 ,获得积分10
45秒前
45秒前
46秒前
飞快的语山完成签到,获得积分10
51秒前
Ni发布了新的文献求助10
51秒前
科研通AI2S应助阿尼亚采纳,获得10
55秒前
bkagyin应助大气可燕采纳,获得10
57秒前
luxihu完成签到,获得积分10
59秒前
搞怪的绿草关注了科研通微信公众号
1分钟前
热爱科研的人完成签到 ,获得积分10
1分钟前
1分钟前
WuYiHHH完成签到,获得积分10
1分钟前
不去明知山完成签到 ,获得积分10
1分钟前
hedgehogcat发布了新的文献求助30
1分钟前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139464
求助须知:如何正确求助?哪些是违规求助? 2790346
关于积分的说明 7795029
捐赠科研通 2446818
什么是DOI,文献DOI怎么找? 1301411
科研通“疑难数据库(出版商)”最低求助积分说明 626219
版权声明 601141