摘要
Hong Kong, among the world's most densely populated cities, has witnessed rapid growth in traffic volume, resulting in increased traffic density and vehicle loads. Regular bridge inspections are imperative to ensure human safety and safeguard property. However, conventional visual inspection methods are highly criticized for their critical limitations such as inaccuracy, subjectivity, labor-intensiveness, tediousness, and hazardousness. Cracks are regarded as the most prevalent type of defects encountered during inspection of reinforced concrete bridges. Automated detection of bridge surface cracks is a quite challenging and hectic task due to their random characteristics and usual in complex and non-uniform background textures. Presence. In light of foregoing, this paper proposes a novel computer vision model for concrete bridge crack detection in an attempt to circumvent the critical deficiencies of manual visual inspection. The developed model is envisioned on the use of you only look once version 8 (YOLOv8) architecture, which is cited as one of the most advanced convolutional neural networks structures for multi-scale object detection. Comprising three fundamental components - the backbone, neck, and head, this model introduces the concept of a decoupled head, segregating it into a detection head and a classification head. This design empowers the model with greater flexibility in handling diverse tasks. Moreover, the incorporation of the global attention module (GAM) and the wise intersection over union (IoU) loss function serves to further boost detection correctness of the developed model and amplify its generalization ability. The developed YOLOv8-GAM-Wise-IoU is compared against some of the widely acknowledged one-stage and two-stage deep learning models using the evaluation metrics of precision, recall, F1-score, mean average precision (mAP) and IoU. It outperformed them accomplishing testing precision, recall, F1-score, mAP50, mAP50–95 and mAP75 of 97.4%, 94.9%, 0.96, 98.1%, 76.2%, and 97.8%, respectively. It is also observed that developed model maintains a modest size of 93.20 M resulting in diminishing the computational cost of training and inference processes. This makes it highly deployable in various crack detection pertaining applications. It can be argued that the developed model can contribute notably to the preservation of safety and integrity of reinforced concrete bridges in Hong Kong environment.