Degradation-Aware Blind Face Restoration via High-Quality VQ Codebook

代码本 计算机科学 矢量量化 人工智能 降级(电信) 图像复原 模式识别(心理学) 面子(社会学概念) 计算机视觉 图像(数学) 图像处理 电信 社会科学 社会学
作者
Yuzhou Sun,Sen Wang,Hao Li,Zhifeng Xie,Mengtian Li,Youdong Ding
出处
期刊:Lecture Notes in Computer Science 卷期号:: 309-321
标识
DOI:10.1007/978-3-031-50069-5_26
摘要

Blind face restoration, as a kind of face restoration method dealing with complex degradation, has been a challenging research hotspot recently. However, due to the influence of a variety of degradation in low-quality images, artifacts commonly exist in the low fidelity results of existing methods, resulting in a lack of natural and realistic texture details. In this paper, we propose a degradation-aware blind face restoration method based on a high-quality vector quantization (VQ) codebook to improve the degradation-aware capability and texture quality. The overall framework consists of Degradation-aware Module (DAM), Texture Refinement Module (TRM) and Global Restoration Module (GRM). DAM adopts the channel attention mechanism to adjust the weight of feature components in different channels, so that it has the ability to perceive complex degradation from redundant information. In TRM, continuous vectors are quantized and replaced with high-quality discretized vectors in the VQ codebook to add texture details. GRM adopts the reverse diffusion process of the pre-trained diffusion model to restore the image globally. Experiments show that our method outperforms state-of-the-art methods on synthetic and real-world datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵OO完成签到,获得积分10
刚刚
Yon完成签到 ,获得积分10
1秒前
呆头完成签到,获得积分10
1秒前
科研通AI5应助skier采纳,获得10
2秒前
ywang发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
keyantong完成签到 ,获得积分10
8秒前
booshu完成签到,获得积分10
9秒前
jy发布了新的文献求助10
10秒前
朴斓完成签到,获得积分10
10秒前
科研通AI5应助魏伯安采纳,获得10
13秒前
哈密哈密完成签到,获得积分10
13秒前
13秒前
Ava应助浪迹天涯采纳,获得10
13秒前
14秒前
安南发布了新的文献求助10
14秒前
15秒前
healthy完成签到 ,获得积分10
15秒前
16秒前
刘大可完成签到,获得积分10
16秒前
19秒前
su发布了新的文献求助10
19秒前
rookie发布了新的文献求助10
20秒前
方勇飞发布了新的文献求助10
21秒前
郭菱香完成签到 ,获得积分20
21秒前
皮念寒完成签到,获得积分10
21秒前
顺其自然_666888完成签到,获得积分10
21秒前
22秒前
向上的小v完成签到 ,获得积分10
23秒前
23秒前
25秒前
酷酷紫蓝完成签到 ,获得积分10
25秒前
25秒前
方勇飞完成签到,获得积分10
25秒前
LYZ完成签到,获得积分10
25秒前
黄景滨完成签到 ,获得积分20
26秒前
26秒前
123456完成签到,获得积分20
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824