Highly efficient activation of ferrate (VI) via corncob biochar assisted by electrochemistry for the removal of sulfamethoxazole from water

生物炭 玉米芯 电化学 化学 降级(电信) 猝灭(荧光) 电子顺磁共振 核化学 无机化学 有机化学 荧光 热解 电极 核磁共振 计算机科学 量子力学 物理 物理化学 电信 原材料
作者
Zhikang Deng,Jinyao Zhu,Chenyu Zeng,Rui Mu,Yongfei Ma,Zulin Zhang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:484: 149479-149479 被引量:4
标识
DOI:10.1016/j.cej.2024.149479
摘要

Ferrate [Fe (VI)] has been shown to be an effective oxidant for pollutants degradation. However, its propensity to self-decompose in water has limited its application. In this study, a novel method was developed for the activation of Fe (VI) using corncob biochar (CBC) with assistance of electrochemistry (EC/Fe (VI)/CBC), aiming to continuous activation of Fe (VI) for the removal of sulfamethoxazole (SMX) from water. Experimental results showed a remarkable SMX removal efficiency of 99.23 %, with simultaneous removal of over 49.68 % of the total organic carbon (TOC) within 60 min (C0 (Fe (VI)) = 0.50 mM, C0 (SMX) = 0.02 mM, E = 25 V, mCBC = 20 mg). The electrochemistry was introduced to guarantee the regeneration of the functional groups on CBC, among which the CO was the possible active site for activation of Fe (VI). Excessive background constituents (NO3–, SO42-, HCO3–, and HA) and high pH were critical influencing factors. The results of cyclic experiments and SMX removal in different real water have demonstrated the stability and potential practical applications of the EC/Fe (VI)/CBC system. The quenching, electron paramagnetic resonance, and probe experiments revealed that 1O2 and Fe (V)/Fe (IV) were identified as the primary active species responsible for the SMX degradation. Theoretical calculation further revealed that the N atoms of SMX were susceptible to be attacked by the reactive species. Subsequently, the SMX was transformed into non-toxic or less toxic products. This work suggested that the combination of electrochemistry and biochar to activate Fe (VI) was a promising technology for antibiotics elimination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然若雁发布了新的文献求助10
2秒前
coc关注了科研通微信公众号
2秒前
双双完成签到,获得积分10
2秒前
瑶625发布了新的文献求助10
2秒前
Strike完成签到,获得积分10
3秒前
调皮纸飞机完成签到,获得积分20
3秒前
董小李完成签到,获得积分10
3秒前
3秒前
研友_8yN60L完成签到,获得积分10
4秒前
zhanzhanzhan发布了新的文献求助10
4秒前
科研通AI5应助自爱悠然采纳,获得10
4秒前
4秒前
Accept应助胡枝子采纳,获得30
4秒前
Strike发布了新的文献求助10
5秒前
Rsoup完成签到,获得积分10
5秒前
6秒前
zz发布了新的文献求助10
6秒前
sfzz完成签到,获得积分10
6秒前
6秒前
如履平川完成签到 ,获得积分10
6秒前
大个应助阳光海云采纳,获得50
6秒前
6秒前
新青年完成签到,获得积分0
6秒前
6秒前
现代的又柔应助研友_8yN60L采纳,获得10
7秒前
7秒前
李健应助傲娇的云朵采纳,获得10
7秒前
7秒前
7秒前
liudiqiu完成签到,获得积分10
7秒前
Akashi完成签到,获得积分10
7秒前
风中珩完成签到 ,获得积分10
8秒前
LIU发布了新的文献求助10
8秒前
8秒前
李知恩完成签到,获得积分10
9秒前
9秒前
EthanChan完成签到,获得积分10
9秒前
9秒前
野性的孤菱完成签到,获得积分10
9秒前
茂密的头发完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740