Topology optimization, additive manufacturing and thermohydraulic testing of heat sinks

材料科学 散热片 传热 机械工程 热流密度 热阻 热导率 热力学 计算机科学 机械 物理 复合材料 工程类
作者
Sicheng Sun,Behzad Rankouhi,D. J. Thoma,M. J. Cheadle,Gunnar D. Maples,Mark Anderson,Gregory Nellis,Xiaoping Qian
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:224: 125281-125281 被引量:11
标识
DOI:10.1016/j.ijheatmasstransfer.2024.125281
摘要

This paper presents a set of high-performing heat sinks that exhibit twice the thermohydraulic performance in terms of conductance compared to conventional rectangular fin heat sinks. The heat sinks presented here are designed through three-dimensional topology optimization (TO), manufactured using additive manufacturing (AM), and their performance is validated through experimental testing. The heat sink design is governed by steady-state Navier-Stokes equations and the energy equation. The objective is to minimize the average temperature of the heat source surface with a constant heat flux. Our design process incorporates two constraints: the pressure drop constraint and the project undercut perimeter (PUP) based overhang angle constraint. The incorporation of the overhang angle constraint ensures that the optimized heat sink design is self-supported and amenable to additive manufacturing without the need for additional support structures. Post-optimization CFD investigations revealed that the optimized heat sink offers improved thermal performance, attributed to 2 kinds of three-dimensional convection effects, thermal boundary layer re-initialization, and efficient mixing. The optimized heat sink designs are manufactured using laser-powder bed fusion process, an additive manufacturing technique, and their superior performance relative to a conventional rectangular heat sink is validated through experimental measurements. The experimental tests are in good agreement with CFD simulations, confirming a remarkable 100% increase in conductance for the TO designs compared to a conventional heat sink.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助echo采纳,获得10
刚刚
刚刚
LSS发布了新的文献求助10
1秒前
3秒前
Cola发布了新的文献求助30
3秒前
罗梦芬完成签到,获得积分20
3秒前
蘑菇完成签到,获得积分10
4秒前
sjl发布了新的文献求助10
4秒前
李健的小迷弟应助jiandan采纳,获得60
4秒前
5秒前
策略完成签到,获得积分20
6秒前
chenshiyi185完成签到,获得积分10
6秒前
6秒前
6秒前
罗梦芬发布了新的文献求助20
7秒前
xicc关注了科研通微信公众号
7秒前
2420083884发布了新的文献求助10
8秒前
罗实完成签到,获得积分10
8秒前
刘金金完成签到,获得积分10
8秒前
aura发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
10秒前
10秒前
felix发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
罗实发布了新的文献求助10
12秒前
Turquiose0522发布了新的文献求助80
12秒前
13秒前
14秒前
酷波er应助车奎采纳,获得10
14秒前
15秒前
15秒前
咕噜坚果发布了新的文献求助10
15秒前
月光完成签到,获得积分10
16秒前
kzzzzz完成签到,获得积分10
16秒前
zyy发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560035
求助须知:如何正确求助?哪些是违规求助? 3134333
关于积分的说明 9406892
捐赠科研通 2834456
什么是DOI,文献DOI怎么找? 1558136
邀请新用户注册赠送积分活动 727884
科研通“疑难数据库(出版商)”最低求助积分说明 716531