Boosting Image Classification Accuracy Leveraging Finer Grained Labels

Boosting(机器学习) 计算机科学 人工智能 上下文图像分类 模式识别(心理学) 机器学习 计算机视觉 图像(数学)
作者
Lei Zhu
标识
DOI:10.1109/icicml60161.2023.10424766
摘要

As the landscape of deep learning has evolved rapidly, numerous models and methodologies have emerged, revolutionizing the domain of image classification. In recent years, OpenAI’s Contrastive Language-Image Pre-Training (CLIP) model, which uniquely bridges visual and textual information, has demonstrated robust generalization across diverse tasks, presenting fresh avenues and opportunities for image classification. Building upon the capabilities of the CLIP model, this research further explores the possibility that finer grained labels may help improve the accuracy of image classification. The proposed method is divided into three steps. First, determine existing or manually annotated sub-class labels to capture nuanced details within primary categories. Second, use CLIP as a feature extractor, augmented with a fully connected layer. This setup facilitates supervised classification, leveraging the granularity of the identified sub-class labels. Third, the classified sub-labels are mapped back to their parent categories, resulting in the final prediction. By introducing and combining the precision of finer-grained labels with CLIP’s robust architecture, this method offers a promising avenue for bolstering classification accuracy. Code is available at https://github.com/24kcqsn/Image-Classification-Leveraging-Finer-Grained-Labels

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白发布了新的文献求助10
1秒前
梦之发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
lgh完成签到 ,获得积分10
2秒前
周星星发布了新的文献求助10
2秒前
2秒前
汉堡包应助ligy采纳,获得10
2秒前
3秒前
科目三应助11采纳,获得10
3秒前
4秒前
小二郎应助Echo采纳,获得30
4秒前
在水一方应助大辉采纳,获得10
4秒前
4秒前
董小树发布了新的文献求助10
5秒前
机灵的大地完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
Tong123发布了新的文献求助10
8秒前
8秒前
桐桐应助从容的夜梦采纳,获得10
8秒前
乔垣结衣发布了新的文献求助30
9秒前
董烁烨发布了新的文献求助10
9秒前
9秒前
junge发布了新的文献求助10
10秒前
杨旭发布了新的文献求助10
11秒前
年轻枫完成签到 ,获得积分10
11秒前
赘婿应助繁花采纳,获得10
11秒前
AnJaShua发布了新的文献求助10
11秒前
Jenny完成签到,获得积分10
12秒前
12秒前
bai发布了新的文献求助10
12秒前
12秒前
Tong123完成签到,获得积分10
13秒前
13秒前
含蓄水风完成签到,获得积分10
13秒前
13秒前
宠儿发布了新的文献求助10
14秒前
14秒前
打打应助lwq采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545511
求助须知:如何正确求助?哪些是违规求助? 4631537
关于积分的说明 14620987
捐赠科研通 4573146
什么是DOI,文献DOI怎么找? 2507403
邀请新用户注册赠送积分活动 1484163
关于科研通互助平台的介绍 1455383