Inverse design of reflective metasurface antennas using deep learning from small‐scale statistically random pico‐cells

自编码 深度学习 卷积神经网络 算法 电子工程 计算机科学 人工智能 工程类
作者
X. You,Feng Han Lin
出处
期刊:Microwave and Optical Technology Letters [Wiley]
卷期号:66 (2) 被引量:5
标识
DOI:10.1002/mop.34068
摘要

Abstract A small‐scale data‐selection method is proposed for deep‐learning‐based inverse design of reflective metasurface antennas (MAs). The overall design process involves discretization, coding, data selection, simulation, feature representation, training, prediction, and metasurface design. Unlike conventional method that selects the training data empirically after simulation from a large quantity of unit cells, the proposed statistically random data filtering (SRDF) method selects the training data set randomly before simulation by leveraging the geometric‐coding statistics of the unit cells. The advantages of the proposed data‐selection method include lower simulation cost (due to fewer simulations needed), improved generality, and higher design accuracy simultaneously. The design process starts from the discretization of a unit cell into a grid array of binaurally‐coded pico‐cells. Afterwards, the proposed SRDF method selects 0.01% of all the possible unit cells for simulation. With the simulated results, a deep‐convolutional‐variational‐autoencoder network is trained, leading to an accurate and bidirectional prediction of both the geometry and reflection phase of a unit cell in seconds. The proposed data‐selection method is validated by designing two reflective MAs with the predicted unit cells, each pointing a pencil beam off the boresight by 30° and 60°, respectively. Experiments are in line with full‐wave simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助Infinit采纳,获得10
2秒前
Teko发布了新的文献求助10
4秒前
Akim应助油个大饼呜呜呜采纳,获得10
4秒前
chris完成签到,获得积分10
4秒前
FXQ123_范发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
7秒前
7秒前
机灵飞阳发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
斯文败类应助Teko采纳,获得10
11秒前
脑洞疼应助小左采纳,获得10
13秒前
15秒前
嗯嗯发布了新的文献求助10
16秒前
16秒前
浮生发布了新的文献求助10
16秒前
17秒前
Teko完成签到,获得积分10
20秒前
英俊的铭应助程之杭采纳,获得10
20秒前
23秒前
喻义梅发布了新的文献求助10
23秒前
jk发布了新的文献求助10
24秒前
可爱的安萱完成签到,获得积分10
26秒前
orixero应助尼莫采纳,获得10
27秒前
28秒前
泡面完成签到 ,获得积分10
28秒前
28秒前
29秒前
29秒前
JUdy发布了新的文献求助20
30秒前
SYLH应助蓝天白云采纳,获得30
31秒前
受伤邴完成签到 ,获得积分10
32秒前
ZZZ发布了新的文献求助10
32秒前
华仔发布了新的文献求助20
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136