A Tractive Population Assisted Dual-Population and Two-Phase Evolutionary Algorithm for Constrained Multi-Objective Optimization

人口 进化算法 数学优化 计算机科学 进化计算 多目标优化 边界(拓扑) 选择(遗传算法) 对偶(语法数字) 算法 数学 人工智能 文学类 艺术 人口学 社会学 数学分析
作者
Shumin Xie,Kangshun Li,Wenxiang Wang,Hui Wang,Chaoda Peng,Hassan Jalil
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:29 (1): 31-45 被引量:9
标识
DOI:10.1109/tevc.2023.3345470
摘要

Both dual-population and two-phase strategies are effective for utilizing infeasible solution information and significantly enhancing the ability of algorithms to solve constrained multi-objective optimization problems. However, most existing algorithms tend to underperform when facing problems with complex constraints. To address these issues, a constrained multi-objective evolutionary algorithm named DPTPEA, which combines dual-population and two-phase strategies, is proposed in this paper. DPTPEA employs two collaborative populations (the exploitive population and the tractive population) and divides the evolutionary process of the tractive population into two phases (Phase 1 and Phase 2). In Phase 1, the tractive population ignores constraints and drags the exploitive population across the infeasible region by sharing offspring information. In Phase 2, the tractive population adopts the epsilon-constrained method to converge toward the constrained Pareto front and to guide the exploitive population exploiting different feasible regions. Moreover, a dynamic cooperation strategy, a boundary point direction sampling strategy, and a dynamic environmental selection are proposed to improve the exploration ability of tractive population for solving complex problems. Comprehensive experiments on three popular test suites demonstrate that DPTPEA outperforms seven state-of-the-art algorithms on most test problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助syyw2021采纳,获得10
刚刚
善学以致用应助QZZ采纳,获得10
刚刚
李科生发布了新的文献求助10
1秒前
嘟嘟完成签到,获得积分10
1秒前
科研通AI5应助天冷了hhhdh采纳,获得10
1秒前
迷路炎彬完成签到,获得积分10
1秒前
小蚂蚁发布了新的文献求助10
1秒前
破晓之照发布了新的文献求助10
3秒前
3秒前
yu发布了新的文献求助10
3秒前
卡坦精发布了新的文献求助10
4秒前
5秒前
英俊的铭应助王大锤采纳,获得10
5秒前
英姑应助跨进行采纳,获得10
6秒前
6秒前
YY完成签到 ,获得积分10
6秒前
上官若男应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
在水一方应助科研通管家采纳,获得20
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
zhuj11应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
灵巧高山应助李科生采纳,获得10
7秒前
7秒前
浦肯野应助hikh采纳,获得20
8秒前
科研通AI5应助坚毅的昭采纳,获得10
8秒前
lwroche发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
Owen应助雅欣采纳,获得10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560985
求助须知:如何正确求助?哪些是违规求助? 3134744
关于积分的说明 9409650
捐赠科研通 2834980
什么是DOI,文献DOI怎么找? 1558372
邀请新用户注册赠送积分活动 728097
科研通“疑难数据库(出版商)”最低求助积分说明 716686