Efficient Discrimination of Hazardous Organophosphate Flame Retardants via Cataluminescence-Based Multidimensional Ratiometric Sensing

化学 CTL公司* 生物化学 细胞毒性T细胞 体外
作者
Zhengjun Gong,Yi Deng,Binbin Zheng,Huanhuan Zhu,Xiao‐Ying Huang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (11): 4544-4552 被引量:9
标识
DOI:10.1021/acs.analchem.3c05333
摘要

Emerging contaminants have recently evolved into a severe worldwide environmental issue. Organophosphate flame retardants (OPFRs) with neurotoxicity, genotoxicity, and reproductive and developmental toxicity are a class of notorious emerging contaminants that cause great concern. The development of high-efficiency and portable sensors for rapid online monitoring of OPFRs has become the primary demand for the exploration of the environmental migration and transformation of OPFRs. In this work, interestingly, the cataluminescence (CTL) phenomenon of OPFRs is first observed, and an ingenious multidimensional ratiometric CTL sensing strategy is developed for the recognition of multiple OPFRs. Three characteristic ratios are extracted from the multipeak CTL spectral curves based on energy transfer of single Tb/Eu-modified MgO sensing material, and thus a novel three-dimensional (3D) code recognition could be mapped out. This obtained 3D coordinate is found to be a unique characteristic for a given OPFR, just like an exclusive person's ID number, which can successfully discriminate and detect 10 kinds of OPFR vapors, including homologous series and isomers. More importantly, CTL mechanism investigations for OPFRs demonstrate that OPFRs undergo a series of chemical reaction processes, e.g., oxidative pyrolysis and hydroxylation, and different high-energy excited intermediates are generated, which trigger discrepant energy-transfer efficiency toward rare earth ions, leading to multipeak spectral profiles. Briefly, this proposed CTL analytical platform for OPFRs recognition initiates a new sensing principle for the efficient identification of emerging contaminants and shows significant prospects on rapid on-site detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助娜娜采纳,获得10
1秒前
1秒前
ZA9完成签到 ,获得积分10
2秒前
哈ha完成签到,获得积分10
2秒前
杰尼龟的鱼完成签到 ,获得积分10
2秒前
2秒前
董是鑫发布了新的文献求助10
2秒前
SciGPT应助铁锅炖大鹅采纳,获得10
2秒前
2秒前
孙丫丫丫丫丫完成签到,获得积分20
3秒前
3秒前
领导范儿应助绾宸采纳,获得10
3秒前
kkkk发布了新的文献求助10
3秒前
3秒前
4秒前
Mimi完成签到 ,获得积分10
4秒前
5秒前
文轩发布了新的文献求助30
5秒前
积极的猎豹完成签到,获得积分10
5秒前
神秘猎牛人完成签到,获得积分10
5秒前
5秒前
危机的阁应助lin采纳,获得150
5秒前
5秒前
小豆发布了新的文献求助10
6秒前
6秒前
勤奋笑天完成签到,获得积分10
6秒前
Kate完成签到,获得积分10
7秒前
你好发布了新的文献求助10
7秒前
月尽天明完成签到,获得积分10
7秒前
阳光桐完成签到,获得积分10
7秒前
彭于彦祖应助科研通管家采纳,获得30
7秒前
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
一颗苹果完成签到 ,获得积分10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
pluto应助科研通管家采纳,获得10
8秒前
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707759
求助须知:如何正确求助?哪些是违规求助? 5185605
关于积分的说明 15251636
捐赠科研通 4860988
什么是DOI,文献DOI怎么找? 2609102
邀请新用户注册赠送积分活动 1559828
关于科研通互助平台的介绍 1517619