MDLDroid: Multimodal Deep Learning Based Android Malware Detection

计算机科学 恶意软件 人工智能 Android(操作系统) 机器学习 Android恶意软件 深度学习 操作码 移动设备 特征提取 特征向量 特征工程 系统调用 计算机安全 操作系统
作者
Narendra Singh,Somanath Tripathy
出处
期刊:Lecture Notes in Computer Science 卷期号:: 159-177
标识
DOI:10.1007/978-3-031-49099-6_10
摘要

In the era of Industry 5.0, there has been tremendous usage of android platforms in several handheld and mobile devices. The openness of the android platform makes it vulnerable for critical malware attacks. Meanwhile, there is also dramatic advancement in malware obfuscation and evading strategies. This leads to failure of traditional malware detection methods. Recently, machine learning techniques have shown promising outcome for malware detection. But past works utilizing machine learning algorithms suffer from several challenges such as inadequate feature extraction, dependency on hand-crafted features, and many more. Thus, existing machine learning approaches are inefficient in detecting sophisticated malware, thus require further enhancement. In this paper, we extract behavioural characteristics of system calls and dynamic API features using our proposed multimodal deep learning model (MDLDroid). Our model extracts system call features using LSTM layers and extracts dynamic API features using CNN. Further, both the features are fused in a vector space which is finally classified for benign and malign categories. Comparison with several state-of-the-art approaches on two dataset shows a significant improvement of 4–12% by the metric accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得30
1秒前
浮游应助科研通管家采纳,获得10
1秒前
asdfzxcv应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
星期8发布了新的文献求助10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
英姑应助科研通管家采纳,获得10
2秒前
华仔应助小姜向阳开采纳,获得10
2秒前
无花果应助微笑的可乐采纳,获得10
2秒前
1665完成签到,获得积分10
2秒前
一只橙子完成签到,获得积分10
2秒前
唐的依关注了科研通微信公众号
3秒前
3秒前
3秒前
wanci应助标致小翠采纳,获得10
4秒前
4秒前
5秒前
6秒前
6秒前
就这样完成签到,获得积分10
7秒前
7秒前
荔枝球球发布了新的文献求助10
7秒前
刚好夏天完成签到 ,获得积分10
8秒前
摔跤的猫完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655817
求助须知:如何正确求助?哪些是违规求助? 4800447
关于积分的说明 15073969
捐赠科研通 4814239
什么是DOI,文献DOI怎么找? 2575559
邀请新用户注册赠送积分活动 1530957
关于科研通互助平台的介绍 1489612