Screening and identification of unknown chemical contaminants in food based on liquid chromatography–high-resolution mass spectrometry and machine learning

化学 污染 人工智能 鉴定(生物学) 分辨率(逻辑) 质谱法 液相色谱-质谱法 高分辨率 色谱法 计算机科学 生态学 植物 遥感 生物 地质学
作者
Tiantian Chen,Wenying Liang,Xiuqiong Zhang,Yuting Wang,Xin Lu,Yujie Zhang,Zhaohui Zhang,Lei You,Xinyu Liu,Chunxia Zhao,Guowang Xu
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1287: 342116-342116 被引量:18
标识
DOI:10.1016/j.aca.2023.342116
摘要

Unknown or unexpected chemical contaminants and/or their transformation products in food that may be harmful to humans need to be discovered for comprehensive safety evaluation. Liquid chromatography–high-resolution mass spectrometry (LC-HRMS) is a powerful tool for detecting chemical contaminants in food samples. However, identifying all of peaks in LC-HRMS is not possible, but if class information is known in advance, further identification will become easier. In this work, a novel MS2 spectra classification-driven screening strategy was constructed based on LC-HRMS and machine learning. First, the classification model was developed based on machine learning algorithm using class information and experimental MS2 data of chemical contaminants and other non-contaminants. By using the developed artificial neural network classification model, in total 32 classes of pesticides, veterinary drugs and mycotoxins were classified with good prediction accuracy and low false-positive rate. Based on the classification model, a screening procedure was developed in which the classes of unknown features in LC-HRMS were first predicted through the classification model, and then their structures were identified under the guidance of class information. Finally, the developed strategy was tentatively applied to the analysis of pork and aquatic products, and 8 chemical contaminants and 11 transformation products belonging to 8 classes were found. This strategy enables screening of unknown chemical contaminants and transformation products in complex food matrices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
温婉的谷菱完成签到,获得积分10
刚刚
2秒前
自由的松完成签到 ,获得积分10
4秒前
罗程翔完成签到,获得积分10
4秒前
文城完成签到 ,获得积分10
5秒前
正直的雅绿完成签到,获得积分10
7秒前
hdanile完成签到 ,获得积分10
11秒前
爱吃蜜桃的猴子完成签到,获得积分10
12秒前
张糊糊完成签到 ,获得积分10
13秒前
雨水完成签到,获得积分10
15秒前
Quency完成签到 ,获得积分10
15秒前
科研通AI2S应助上山的吗喽采纳,获得10
15秒前
Archer完成签到,获得积分10
16秒前
17秒前
漾漾完成签到,获得积分10
18秒前
隐形的大米完成签到,获得积分20
18秒前
炙热的萤完成签到,获得积分10
19秒前
木棉完成签到,获得积分10
19秒前
Zz完成签到 ,获得积分10
22秒前
MJ完成签到,获得积分10
22秒前
23秒前
小黄瓜896完成签到,获得积分10
23秒前
小马甲应助tjnusq采纳,获得10
24秒前
广州队完成签到,获得积分10
24秒前
guozizi发布了新的文献求助10
26秒前
26秒前
27秒前
28秒前
壮观的谷冬完成签到 ,获得积分0
28秒前
量子星尘发布了新的文献求助10
29秒前
艾草纷飞完成签到,获得积分10
29秒前
adeno发布了新的文献求助10
29秒前
我思故我在完成签到,获得积分0
30秒前
瘦瘦安梦完成签到,获得积分10
30秒前
Hailey发布了新的文献求助10
31秒前
ltt发布了新的文献求助10
31秒前
Will完成签到,获得积分10
32秒前
苽峰完成签到,获得积分10
32秒前
顺利紫山完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603567
求助须知:如何正确求助?哪些是违规求助? 4688515
关于积分的说明 14854346
捐赠科研通 4693603
什么是DOI,文献DOI怎么找? 2540859
邀请新用户注册赠送积分活动 1507072
关于科研通互助平台的介绍 1471806