Screening and identification of unknown chemical contaminants in food based on liquid chromatography–high-resolution mass spectrometry and machine learning

化学 污染 人工智能 鉴定(生物学) 分辨率(逻辑) 质谱法 液相色谱-质谱法 高分辨率 色谱法 计算机科学 生态学 植物 遥感 生物 地质学
作者
Tiantian Chen,Wenying Liang,Xiuqiong Zhang,Yuting Wang,Xin Lu,Yujie Zhang,Zhaohui Zhang,Lei You,Xinyu Liu,Chunxia Zhao,Guowang Xu
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1287: 342116-342116 被引量:18
标识
DOI:10.1016/j.aca.2023.342116
摘要

Unknown or unexpected chemical contaminants and/or their transformation products in food that may be harmful to humans need to be discovered for comprehensive safety evaluation. Liquid chromatography–high-resolution mass spectrometry (LC-HRMS) is a powerful tool for detecting chemical contaminants in food samples. However, identifying all of peaks in LC-HRMS is not possible, but if class information is known in advance, further identification will become easier. In this work, a novel MS2 spectra classification-driven screening strategy was constructed based on LC-HRMS and machine learning. First, the classification model was developed based on machine learning algorithm using class information and experimental MS2 data of chemical contaminants and other non-contaminants. By using the developed artificial neural network classification model, in total 32 classes of pesticides, veterinary drugs and mycotoxins were classified with good prediction accuracy and low false-positive rate. Based on the classification model, a screening procedure was developed in which the classes of unknown features in LC-HRMS were first predicted through the classification model, and then their structures were identified under the guidance of class information. Finally, the developed strategy was tentatively applied to the analysis of pork and aquatic products, and 8 chemical contaminants and 11 transformation products belonging to 8 classes were found. This strategy enables screening of unknown chemical contaminants and transformation products in complex food matrices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
田様应助yy采纳,获得30
1秒前
1秒前
2秒前
rammy完成签到,获得积分10
2秒前
yueyueyue完成签到,获得积分10
2秒前
Zing发布了新的文献求助10
3秒前
脑洞疼应助julienCCC采纳,获得10
3秒前
3秒前
HHHHH完成签到,获得积分10
5秒前
大方雪卉完成签到,获得积分10
5秒前
xsad完成签到,获得积分10
5秒前
5秒前
zhanghao发布了新的文献求助10
6秒前
科研通AI2S应助甜椒采纳,获得10
6秒前
龅牙苏完成签到,获得积分10
7秒前
打打应助认真的寒香采纳,获得10
7秒前
8秒前
xxxxx炒菜发布了新的文献求助10
8秒前
web123完成签到,获得积分10
8秒前
浅呀呀呀完成签到 ,获得积分10
9秒前
汉堡包应助青mu采纳,获得10
9秒前
花花完成签到 ,获得积分10
9秒前
优雅凛发布了新的文献求助10
10秒前
大聪明应助友好的牛排采纳,获得10
10秒前
刘阳完成签到,获得积分10
10秒前
今后应助Zing采纳,获得10
10秒前
JQKing完成签到 ,获得积分10
10秒前
11秒前
11秒前
ala完成签到,获得积分10
11秒前
最棒哒发布了新的文献求助10
11秒前
12秒前
搜集达人应助bjyx采纳,获得10
12秒前
13秒前
13秒前
斯文败类应助三笠采纳,获得10
13秒前
angelinazh完成签到,获得积分10
14秒前
14秒前
耗尽发布了新的文献求助10
14秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338621
求助须知:如何正确求助?哪些是违规求助? 4475739
关于积分的说明 13929215
捐赠科研通 4370994
什么是DOI,文献DOI怎么找? 2401582
邀请新用户注册赠送积分活动 1394626
关于科研通互助平台的介绍 1366445