Screening and identification of unknown chemical contaminants in food based on liquid chromatography–high-resolution mass spectrometry and machine learning

化学 污染 人工智能 鉴定(生物学) 分辨率(逻辑) 质谱法 液相色谱-质谱法 高分辨率 色谱法 计算机科学 生态学 植物 遥感 生物 地质学
作者
Tiantian Chen,Wenying Liang,Xiuqiong Zhang,Yuting Wang,Xin Lu,Yujie Zhang,Zhaohui Zhang,Lei You,Xinyu Liu,Chunxia Zhao,Guowang Xu
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1287: 342116-342116 被引量:18
标识
DOI:10.1016/j.aca.2023.342116
摘要

Unknown or unexpected chemical contaminants and/or their transformation products in food that may be harmful to humans need to be discovered for comprehensive safety evaluation. Liquid chromatography–high-resolution mass spectrometry (LC-HRMS) is a powerful tool for detecting chemical contaminants in food samples. However, identifying all of peaks in LC-HRMS is not possible, but if class information is known in advance, further identification will become easier. In this work, a novel MS2 spectra classification-driven screening strategy was constructed based on LC-HRMS and machine learning. First, the classification model was developed based on machine learning algorithm using class information and experimental MS2 data of chemical contaminants and other non-contaminants. By using the developed artificial neural network classification model, in total 32 classes of pesticides, veterinary drugs and mycotoxins were classified with good prediction accuracy and low false-positive rate. Based on the classification model, a screening procedure was developed in which the classes of unknown features in LC-HRMS were first predicted through the classification model, and then their structures were identified under the guidance of class information. Finally, the developed strategy was tentatively applied to the analysis of pork and aquatic products, and 8 chemical contaminants and 11 transformation products belonging to 8 classes were found. This strategy enables screening of unknown chemical contaminants and transformation products in complex food matrices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
聪明书蝶完成签到 ,获得积分10
1秒前
lzzj发布了新的文献求助10
1秒前
Lydia完成签到,获得积分10
2秒前
ddbc发布了新的文献求助10
2秒前
2秒前
幽逸发布了新的文献求助10
4秒前
4秒前
半夏完成签到 ,获得积分10
5秒前
5秒前
6秒前
徐小美发布了新的文献求助30
7秒前
1212发布了新的文献求助10
8秒前
111完成签到,获得积分10
8秒前
ddbc完成签到,获得积分10
9秒前
在雨里思考完成签到,获得积分10
9秒前
10秒前
乐乐应助杨小鸿采纳,获得10
11秒前
11秒前
紧张的谷槐完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
幽逸完成签到,获得积分10
12秒前
Szw666完成签到,获得积分10
17秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
jojo完成签到 ,获得积分10
19秒前
20秒前
lll完成签到,获得积分20
20秒前
VAN发布了新的文献求助10
23秒前
徐小美完成签到,获得积分20
24秒前
传奇3应助lll采纳,获得30
24秒前
老仙翁完成签到,获得积分10
24秒前
lilyz615完成签到,获得积分10
26秒前
27秒前
ding应助听见采纳,获得10
29秒前
29秒前
30秒前
斯文败类应助kuny采纳,获得10
30秒前
77发布了新的文献求助10
31秒前
aniver完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978