Screening and identification of unknown chemical contaminants in food based on liquid chromatography–high-resolution mass spectrometry and machine learning

化学 污染 人工智能 鉴定(生物学) 分辨率(逻辑) 质谱法 液相色谱-质谱法 高分辨率 色谱法 计算机科学 生态学 植物 遥感 生物 地质学
作者
Tiantian Chen,Wenying Liang,Xiuqiong Zhang,Yuting Wang,Xin Lu,Yujie Zhang,Zhaohui Zhang,Lei You,Xinyu Liu,Chunxia Zhao,Guowang Xu
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1287: 342116-342116 被引量:10
标识
DOI:10.1016/j.aca.2023.342116
摘要

Unknown or unexpected chemical contaminants and/or their transformation products in food that may be harmful to humans need to be discovered for comprehensive safety evaluation. Liquid chromatography–high-resolution mass spectrometry (LC-HRMS) is a powerful tool for detecting chemical contaminants in food samples. However, identifying all of peaks in LC-HRMS is not possible, but if class information is known in advance, further identification will become easier. In this work, a novel MS2 spectra classification-driven screening strategy was constructed based on LC-HRMS and machine learning. First, the classification model was developed based on machine learning algorithm using class information and experimental MS2 data of chemical contaminants and other non-contaminants. By using the developed artificial neural network classification model, in total 32 classes of pesticides, veterinary drugs and mycotoxins were classified with good prediction accuracy and low false-positive rate. Based on the classification model, a screening procedure was developed in which the classes of unknown features in LC-HRMS were first predicted through the classification model, and then their structures were identified under the guidance of class information. Finally, the developed strategy was tentatively applied to the analysis of pork and aquatic products, and 8 chemical contaminants and 11 transformation products belonging to 8 classes were found. This strategy enables screening of unknown chemical contaminants and transformation products in complex food matrices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
輓楓完成签到,获得积分10
1秒前
1秒前
HUO发布了新的文献求助10
1秒前
张张张完成签到,获得积分10
1秒前
4秒前
4秒前
Z17完成签到,获得积分10
4秒前
luct发布了新的文献求助10
5秒前
CodeCraft应助寒鸦浮水采纳,获得10
9秒前
半富半莲发布了新的文献求助10
9秒前
HUO完成签到,获得积分10
9秒前
11秒前
luct完成签到,获得积分10
11秒前
在水一方应助二指弹采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
星辰大海应助without采纳,获得10
13秒前
小胖爱学习完成签到,获得积分10
14秒前
zhenghang发布了新的文献求助10
15秒前
大地上的鱼完成签到,获得积分10
16秒前
Cheney发布了新的文献求助10
17秒前
半富半莲完成签到,获得积分10
18秒前
flj7038完成签到,获得积分0
19秒前
潜龙发布了新的文献求助10
20秒前
完美世界应助zhangwansen采纳,获得10
20秒前
21秒前
can完成签到,获得积分10
21秒前
梧桐应助Ashley采纳,获得10
23秒前
二指弹发布了新的文献求助10
25秒前
汉堡包应助我就是KKKK采纳,获得10
25秒前
隐形曼青应助Xulun采纳,获得10
26秒前
烟花应助无语的麦片采纳,获得10
27秒前
娃娃菜妮完成签到 ,获得积分10
28秒前
谨慎鞅完成签到,获得积分10
28秒前
自由从筠完成签到 ,获得积分10
28秒前
31秒前
31秒前
网友依旧完成签到,获得积分10
32秒前
浮雨微清完成签到,获得积分10
34秒前
34秒前
34秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010682
求助须知:如何正确求助?哪些是违规求助? 3550411
关于积分的说明 11305615
捐赠科研通 3284751
什么是DOI,文献DOI怎么找? 1810846
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499