Screening and identification of unknown chemical contaminants in food based on liquid chromatography–high-resolution mass spectrometry and machine learning

化学 污染 人工智能 鉴定(生物学) 分辨率(逻辑) 质谱法 高分辨率 色谱法 转化(遗传学) 机器学习 模式识别(心理学) 计算机科学 基因 生物 遥感 地质学 植物 生物化学 生态学
作者
Tiantian Chen,Wenying Liang,Xiuqiong Zhang,Yuting Wang,Xin Lu,Yujie Zhang,Zhaohui Zhang,Lei You,Xinyu Liu,Chunxia Zhao,Guowang Xu
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1287: 342116-342116
标识
DOI:10.1016/j.aca.2023.342116
摘要

Unknown or unexpected chemical contaminants and/or their transformation products in food that may be harmful to humans need to be discovered for comprehensive safety evaluation. Liquid chromatography–high-resolution mass spectrometry (LC-HRMS) is a powerful tool for detecting chemical contaminants in food samples. However, identifying all of peaks in LC-HRMS is not possible, but if class information is known in advance, further identification will become easier. In this work, a novel MS2 spectra classification-driven screening strategy was constructed based on LC-HRMS and machine learning. First, the classification model was developed based on machine learning algorithm using class information and experimental MS2 data of chemical contaminants and other non-contaminants. By using the developed artificial neural network classification model, in total 32 classes of pesticides, veterinary drugs and mycotoxins were classified with good prediction accuracy and low false-positive rate. Based on the classification model, a screening procedure was developed in which the classes of unknown features in LC-HRMS were first predicted through the classification model, and then their structures were identified under the guidance of class information. Finally, the developed strategy was tentatively applied to the analysis of pork and aquatic products, and 8 chemical contaminants and 11 transformation products belonging to 8 classes were found. This strategy enables screening of unknown chemical contaminants and transformation products in complex food matrices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wells发布了新的文献求助10
1秒前
嚣张的小张完成签到,获得积分10
2秒前
李健应助旭宝儿采纳,获得10
2秒前
喷火龙关注了科研通微信公众号
2秒前
2秒前
3秒前
易安发布了新的文献求助10
3秒前
卜宁发布了新的文献求助10
4秒前
Wells完成签到,获得积分10
6秒前
酷酷完成签到,获得积分10
7秒前
weiwei发布了新的文献求助10
7秒前
8秒前
9秒前
大意的柚子完成签到,获得积分10
10秒前
Ava应助weiwei采纳,获得10
11秒前
万能图书馆应助weiwei采纳,获得10
11秒前
武科大完成签到,获得积分10
12秒前
13秒前
xhui1113完成签到 ,获得积分10
14秒前
玖念发布了新的文献求助10
15秒前
田様应助鄢廷芮采纳,获得10
15秒前
不安的凡发布了新的文献求助10
16秒前
hou完成签到 ,获得积分10
16秒前
危机的井完成签到,获得积分10
16秒前
李健的小迷弟应助bo采纳,获得10
16秒前
Hello应助chaning采纳,获得10
17秒前
feifei驳回了乐乐应助
19秒前
奋斗醉冬完成签到,获得积分10
21秒前
charles发布了新的文献求助10
21秒前
12完成签到 ,获得积分20
21秒前
随心随意完成签到,获得积分20
21秒前
ding应助叶sir采纳,获得10
22秒前
wangsikui发布了新的文献求助10
22秒前
sjyu1985完成签到 ,获得积分10
22秒前
烟花应助zoe666采纳,获得10
23秒前
23秒前
开心应助莫子默采纳,获得10
24秒前
shanyuee应助优雅大树采纳,获得30
24秒前
谨慎的橘子完成签到,获得积分10
25秒前
25秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140687
求助须知:如何正确求助?哪些是违规求助? 2791513
关于积分的说明 7799229
捐赠科研通 2447844
什么是DOI,文献DOI怎么找? 1302096
科研通“疑难数据库(出版商)”最低求助积分说明 626439
版权声明 601194