Research on lightweight GPR road surface disease image recognition and data expansion algorithm based on YOLO and GAN

卷积神经网络 计算机科学 探地雷达 人工神经网络 人工智能 深度学习 功能(生物学) 特征(语言学) 图像(数学) 过程(计算) 算法 模式识别(心理学) 机器学习 雷达 电信 语言学 哲学 进化生物学 生物 操作系统
作者
Chen Liu,Yongsheng Yao,Jue Li,Junfeng Qian,Lihao Liu
出处
期刊:Case Studies in Construction Materials [Elsevier BV]
卷期号:20: e02779-e02779 被引量:11
标识
DOI:10.1016/j.cscm.2023.e02779
摘要

The aim of this paper is to improve the accuracy and efficiency of ground penetrating Radar (GPR) detection of internal road surface disease images. Based on the YOLOv4 target detection algorithm, this study introduces MobilenetV2 and CBAM attention mechanism, and combines the Focal loss confidence loss function to iterate the model, so as to design an efficient and lightweight GPR pavement disease image recognition algorithm, MC-YOLOv4. At the same time, in order to alleviate the problem of data scarcity in GPR, we redesign an unsupervised generative adversarial neural network based on self-attention mechanism, namely SGAN-W. Experiments show that MC-YOLOv4 not only has faster reasoning ability, but also occupies only 23% of the memory of YOLOv5-S. After using the SGAN data augmentation, the [email protected] evaluation index is further improved by 2.63%, and the collapse and mode collapse that may occur in the training process of the traditional Convolutional Generative Adversarial Neural Network (DCGAN) are avoided. After introducing the Focal loss confidence loss function to participate in the training, It significantly improves the imbalance between the precision and recall of the detection model, and this scheme is verified and supported by real scenes. The experimental results show that the proposed method has significant advantages in automatic detection and data expansion of lightweight GPR pavement invisible diseases, which has a wide range of application value and research significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
刚刚
称心的不言应助YANG采纳,获得10
1秒前
唠叨的胡萝卜完成签到,获得积分10
1秒前
1秒前
搞怪孤丝完成签到 ,获得积分10
1秒前
3秒前
SAINT完成签到,获得积分10
3秒前
4秒前
6秒前
7秒前
iaskwho发布了新的文献求助10
7秒前
111完成签到,获得积分10
8秒前
8秒前
DarrenVan完成签到,获得积分10
11秒前
英俊的铭应助lk采纳,获得10
11秒前
lucky完成签到 ,获得积分10
11秒前
王国科发布了新的文献求助10
12秒前
高高的天亦完成签到 ,获得积分10
12秒前
小D发布了新的文献求助10
13秒前
村上春树的摩的完成签到 ,获得积分10
13秒前
Fox完成签到,获得积分20
14秒前
15秒前
一一完成签到 ,获得积分10
15秒前
16秒前
ccm应助科研通管家采纳,获得10
17秒前
Bio应助科研通管家采纳,获得150
17秒前
无花果应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
18秒前
ccm应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
若ruofeng应助科研通管家采纳,获得20
18秒前
dew应助科研通管家采纳,获得10
18秒前
18秒前
若ruofeng应助科研通管家采纳,获得20
18秒前
馆长应助科研通管家采纳,获得10
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
若ruofeng应助科研通管家采纳,获得20
18秒前
若ruofeng应助科研通管家采纳,获得20
18秒前
若ruofeng应助科研通管家采纳,获得20
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142180
求助须知:如何正确求助?哪些是违规求助? 4340425
关于积分的说明 13517521
捐赠科研通 4180348
什么是DOI,文献DOI怎么找? 2292405
邀请新用户注册赠送积分活动 1293003
关于科研通互助平台的介绍 1235514