Research on lightweight GPR road surface disease image recognition and data expansion algorithm based on YOLO and GAN

卷积神经网络 计算机科学 探地雷达 人工神经网络 人工智能 深度学习 功能(生物学) 特征(语言学) 图像(数学) 过程(计算) 算法 模式识别(心理学) 机器学习 雷达 电信 语言学 哲学 进化生物学 生物 操作系统
作者
Chen Liu,Yongsheng Yao,Jue Li,Junfeng Qian,Lihao Liu
出处
期刊:Case Studies in Construction Materials [Elsevier BV]
卷期号:20: e02779-e02779 被引量:11
标识
DOI:10.1016/j.cscm.2023.e02779
摘要

The aim of this paper is to improve the accuracy and efficiency of ground penetrating Radar (GPR) detection of internal road surface disease images. Based on the YOLOv4 target detection algorithm, this study introduces MobilenetV2 and CBAM attention mechanism, and combines the Focal loss confidence loss function to iterate the model, so as to design an efficient and lightweight GPR pavement disease image recognition algorithm, MC-YOLOv4. At the same time, in order to alleviate the problem of data scarcity in GPR, we redesign an unsupervised generative adversarial neural network based on self-attention mechanism, namely SGAN-W. Experiments show that MC-YOLOv4 not only has faster reasoning ability, but also occupies only 23% of the memory of YOLOv5-S. After using the SGAN data augmentation, the [email protected] evaluation index is further improved by 2.63%, and the collapse and mode collapse that may occur in the training process of the traditional Convolutional Generative Adversarial Neural Network (DCGAN) are avoided. After introducing the Focal loss confidence loss function to participate in the training, It significantly improves the imbalance between the precision and recall of the detection model, and this scheme is verified and supported by real scenes. The experimental results show that the proposed method has significant advantages in automatic detection and data expansion of lightweight GPR pavement invisible diseases, which has a wide range of application value and research significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玖依发布了新的文献求助10
刚刚
栖遇完成签到 ,获得积分10
2秒前
3秒前
科研小白发布了新的文献求助10
3秒前
3秒前
hhhhhh完成签到 ,获得积分10
4秒前
XM关闭了XM文献求助
4秒前
丘比特应助韋晴采纳,获得10
7秒前
7秒前
玖依完成签到,获得积分10
7秒前
ccy发布了新的文献求助10
8秒前
klyang应助皮皮采纳,获得80
8秒前
Tiger发布了新的文献求助10
10秒前
hyacinth11111完成签到 ,获得积分10
10秒前
小星星发布了新的文献求助10
10秒前
10秒前
斯文败类应助李明采纳,获得10
12秒前
12秒前
尹小末完成签到,获得积分10
13秒前
14秒前
浮游应助robin采纳,获得10
15秒前
无花果应助ZJH采纳,获得10
15秒前
liao完成签到 ,获得积分10
16秒前
科研通AI5应助dz采纳,获得10
18秒前
AAAaa发布了新的文献求助10
18秒前
13728891737完成签到,获得积分10
18秒前
18秒前
时尚的芮完成签到 ,获得积分10
19秒前
19秒前
shihuima发布了新的文献求助10
21秒前
22秒前
小星星完成签到,获得积分10
22秒前
鱼叮叮完成签到,获得积分10
23秒前
VV发布了新的文献求助50
23秒前
23秒前
25秒前
25秒前
27秒前
27秒前
dz完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181974
求助须知:如何正确求助?哪些是违规求助? 4368782
关于积分的说明 13604227
捐赠科研通 4220207
什么是DOI,文献DOI怎么找? 2314547
邀请新用户注册赠送积分活动 1313259
关于科研通互助平台的介绍 1261945