Research on lightweight GPR road surface disease image recognition and data expansion algorithm based on YOLO and GAN

卷积神经网络 计算机科学 探地雷达 人工神经网络 人工智能 深度学习 功能(生物学) 特征(语言学) 图像(数学) 过程(计算) 算法 模式识别(心理学) 机器学习 雷达 电信 语言学 哲学 进化生物学 生物 操作系统
作者
Chen Liu,Yongsheng Yao,Jue Li,Junfeng Qian,Lihao Liu
出处
期刊:Case Studies in Construction Materials [Elsevier BV]
卷期号:20: e02779-e02779 被引量:11
标识
DOI:10.1016/j.cscm.2023.e02779
摘要

The aim of this paper is to improve the accuracy and efficiency of ground penetrating Radar (GPR) detection of internal road surface disease images. Based on the YOLOv4 target detection algorithm, this study introduces MobilenetV2 and CBAM attention mechanism, and combines the Focal loss confidence loss function to iterate the model, so as to design an efficient and lightweight GPR pavement disease image recognition algorithm, MC-YOLOv4. At the same time, in order to alleviate the problem of data scarcity in GPR, we redesign an unsupervised generative adversarial neural network based on self-attention mechanism, namely SGAN-W. Experiments show that MC-YOLOv4 not only has faster reasoning ability, but also occupies only 23% of the memory of YOLOv5-S. After using the SGAN data augmentation, the [email protected] evaluation index is further improved by 2.63%, and the collapse and mode collapse that may occur in the training process of the traditional Convolutional Generative Adversarial Neural Network (DCGAN) are avoided. After introducing the Focal loss confidence loss function to participate in the training, It significantly improves the imbalance between the precision and recall of the detection model, and this scheme is verified and supported by real scenes. The experimental results show that the proposed method has significant advantages in automatic detection and data expansion of lightweight GPR pavement invisible diseases, which has a wide range of application value and research significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
星辰大海应助Marco_hxkq采纳,获得10
2秒前
2秒前
3秒前
哇咔咔完成签到,获得积分10
3秒前
若鱼关注了科研通微信公众号
3秒前
淡然觅海完成签到 ,获得积分10
4秒前
2024220513发布了新的文献求助10
5秒前
玩命的谷槐完成签到,获得积分10
8秒前
善学以致用应助陈晓真采纳,获得10
10秒前
在水一方应助liuguohua126采纳,获得10
10秒前
扶余山本完成签到,获得积分10
11秒前
Hermione完成签到,获得积分10
11秒前
大海完成签到,获得积分10
12秒前
12秒前
13秒前
扶余山本发布了新的文献求助10
13秒前
14秒前
nobody完成签到,获得积分10
15秒前
wanci应助深情的雁露采纳,获得10
16秒前
xiaoyan完成签到,获得积分20
16秒前
16秒前
18秒前
19秒前
19秒前
19秒前
头发乱了发布了新的文献求助10
22秒前
李荷月完成签到,获得积分10
23秒前
23秒前
23秒前
风趣翠霜应助哈哈采纳,获得20
23秒前
千空发布了新的文献求助10
25秒前
25秒前
sunflowers发布了新的文献求助10
26秒前
26秒前
热心的十二完成签到 ,获得积分10
28秒前
28秒前
若鱼发布了新的文献求助10
29秒前
烟花应助不散的和弦采纳,获得10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951145
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082681
捐赠科研通 3226970
什么是DOI,文献DOI怎么找? 1784113
邀请新用户注册赠送积分活动 868202
科研通“疑难数据库(出版商)”最低求助积分说明 801089