TunGPR: Enhancing data-driven maintenance for tunnel linings through synthetic datasets, deep learning and BIM

探地雷达 互操作性 工程类 建筑信息建模 计算机科学 卷积神经网络 数据挖掘 人工智能 雷达 电信 操作系统 相容性(地球化学) 化学工程
作者
Huamei Zhu,Mengqi Huang,Qianbing Zhang
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:145: 105568-105568 被引量:14
标识
DOI:10.1016/j.tust.2023.105568
摘要

Non-destructive Testing (NDT) techniques and data-driven technologies are increasingly applied in underground infrastructure maintenance, which can facilitate predictive monitoring for informed decision-making. Ground Penetrating Radar (GPR) is extensively utilised in rapid condition assessment of tunnel linings, particularly for detecting defects that lead to unforeseen changes of dielectric properties of materials. In this paper, a prototyped framework is proposed, namely TunGPR, for GPR-based tunnel lining assessment by incorporating Building Information Modelling (BIM), synthetic database and deep learning-enabled interpretation. The first module integrates laser-scanned point clouds and GPR Scan-to-BIM of tunnel lining with geological model. Subsequently, interoperability is achieved between the geo-integrated BIM and GPR simulation software. From the dielectric model retrieved from the BIM model, a database is established, considering a variety of condition combinations (i.e., voids, cavities, delamination, and water intrusion) leveraging domain randomisation and Finite-Difference Time-Domain (FDTD) modelling, as well as monitored field data. The dataset is then fed into the diagnostic module underpinned by a dual-rotational Convolutional Neural Network (CNN) that is customised to enhance accuracy and automation of hyperbola detection. Lastly, a preliminary risk assessment matrix is implemented into the BIM model for data management and action prioritisation. These efforts serve as an initial step to validate the feasibility and effectiveness of the GPR-enabled data-driven maintenance for tunnel linings in a BIM-centred framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Su发布了新的文献求助10
3秒前
SAL完成签到,获得积分10
4秒前
ni完成签到,获得积分10
5秒前
崔鹏发布了新的文献求助10
8秒前
JY完成签到,获得积分10
8秒前
9秒前
领导范儿应助WTTTTTFFFFFF采纳,获得10
9秒前
11秒前
欣慰听南发布了新的文献求助10
11秒前
11秒前
11秒前
大模型应助sixone采纳,获得10
12秒前
13秒前
负责的归尘关注了科研通微信公众号
13秒前
pluto应助彭医生采纳,获得80
14秒前
崔鹏完成签到,获得积分20
17秒前
adeno发布了新的文献求助10
19秒前
123~!完成签到 ,获得积分10
20秒前
21秒前
卷卷发布了新的文献求助10
22秒前
22秒前
月下荷花发布了新的文献求助10
22秒前
香蕉觅云应助魏魏采纳,获得10
22秒前
柴郡喵完成签到,获得积分10
23秒前
内向人生发布了新的文献求助10
23秒前
有机合成完成签到,获得积分20
25秒前
留胡子的之槐完成签到,获得积分10
25秒前
26秒前
sixone发布了新的文献求助10
26秒前
俊逸鹏笑完成签到,获得积分10
28秒前
diaoyirui发布了新的文献求助10
28秒前
28秒前
31秒前
33秒前
十三完成签到,获得积分10
34秒前
彭于晏应助江小姜采纳,获得10
35秒前
月下荷花完成签到,获得积分10
35秒前
36秒前
小树完成签到,获得积分10
36秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3213966
求助须知:如何正确求助?哪些是违规求助? 2862533
关于积分的说明 8134362
捐赠科研通 2528767
什么是DOI,文献DOI怎么找? 1362973
科研通“疑难数据库(出版商)”最低求助积分说明 643729
邀请新用户注册赠送积分活动 616041