基因敲除
生物
额颞叶变性
神经毒性
泛素
损失函数
RNA结合蛋白
抄写(语言学)
下调和上调
细胞生物学
核糖核酸
基因
分子生物学
遗传学
病理
失智症
医学
毒性
表型
内科学
哲学
语言学
疾病
痴呆
作者
Longhong Zhu,Fuyu Deng,Dazhang Bai,Junqi Hou,Qingqing Jia,Chen Zhang,Kaili Ou,Shihua Li,Xiao‐Jiang Li,Peng Yin
标识
DOI:10.1007/s00018-023-05066-2
摘要
The nuclear loss and cytoplasmic accumulation of TDP-43 (TAR DNA/RNA binding protein 43) are pathological hallmarks of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previously, we reported that the primate-specific cleavage of TDP-43 accounts for its cytoplasmic mislocalization in patients' brains. This prompted us to investigate further whether and how the loss of nuclear TDP-43 mediates neuropathology in primate brain. In this study, we report that TDP-43 knockdown at the similar effectiveness, induces more damage to neuronal cells in the monkey brain than rodent mouse. Importantly, the loss of TDP-43 suppresses the E3 ubiquitin ligase PJA1 expression in the monkey brain at transcriptional level, but yields an opposite upregulation of PJA1 in the mouse brain. This distinct effect is due to the species-dependent binding of nuclear TDP-43 to the unique promoter sequences of the PJA1 genes. Further analyses reveal that the reduction of PJA1 accelerates neurotoxicity, whereas overexpressing PJA1 diminishes neuronal cell death by the TDP-43 knockdown in vivo. Our findings not only uncover a novel primate-specific neurotoxic contribution to the loss of function theory of TDP-43 proteinopathy, but also underscore a potential therapeutic approach of PJA1 to the loss of nuclear TDP-43.
科研通智能强力驱动
Strongly Powered by AbleSci AI