Temporal Social Graph Network Hashing for Efficient Recommendation

计算机科学 散列函数 推荐系统 图形 人气 哈希表 理论计算机科学 社交网络(社会语言学) 情报检索 二进制代码 大方坯过滤器 数据挖掘 二进制数 社会化媒体 算法 万维网 计算机安全 心理学 社会心理学 算术 数学
作者
Yang Xu,Lei Zhu,Jingjing Li,Fengling Li,Heng Tao Shen
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (7): 3541-3555
标识
DOI:10.1109/tkde.2024.3352255
摘要

Hashing-based recommender systems that represent users and items as binary hash codes are recently proposed to significantly improve time and space efficiency. However, the highly developed social media presents two major challenges to hashing-based recommendation algorithms. Firstly, the boundary between information producers and consumers becomes blurred, resulting in the rapid emergence of massive online content. Meanwhile, users' limited information consumption capacity inevitably causes further interaction sparsity. The inherent high sparsity of data leads to insufficient hash learning. Secondly, a considerable amount of online content becomes fast-moving consumer goods, such as short videos and news commentary, causing frequent changes in user interests and item popularity. To address the above problems, we propose a Temporal Social Graph Network Hashing (TSGNH) method for efficient recommendation, which generates binary hash codes of users and items through dynamic-adaptive aggregation on a constructed temporal social graph network. Specifically, we build a temporal social graph network to fully capture the social information widely existing in practical recommendation scenarios and propose a dynamic-adaptive aggregation method to capture long-term and short-term characters of users and items. Furthermore, different from the discrete optimization approaches used by existing hashing-based recommendation methods, we devise an end-to-end hashing learning approach that incorporates balanced and de-correlated constraints to learn compact and informative binary hash codes tailored for recommendation scenarios. Extensive experiments on three widely evaluated recommendation datasets demonstrate the superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十三号失眠完成签到,获得积分10
刚刚
单纯曼冬完成签到 ,获得积分10
1秒前
无花果应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得20
2秒前
想抱发布了新的文献求助10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
李爱国应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
3秒前
慕青应助科研通管家采纳,获得10
3秒前
机灵白桃发布了新的文献求助10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
SHAO应助科研通管家采纳,获得10
3秒前
结实盼烟应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
成就的纸飞机完成签到,获得积分20
4秒前
田様应助行走采纳,获得10
5秒前
Akim应助行走采纳,获得10
5秒前
好好学习完成签到,获得积分10
5秒前
coco完成签到,获得积分10
6秒前
8秒前
123发布了新的文献求助10
8秒前
lo发布了新的文献求助50
9秒前
9秒前
WILD完成签到 ,获得积分10
10秒前
受伤问凝完成签到 ,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992495
求助须知:如何正确求助?哪些是违规求助? 3533431
关于积分的说明 11262369
捐赠科研通 3273025
什么是DOI,文献DOI怎么找? 1805895
邀请新用户注册赠送积分活动 882800
科研通“疑难数据库(出版商)”最低求助积分说明 809496