Temporal Social Graph Network Hashing for Efficient Recommendation

计算机科学 散列函数 推荐系统 图形 人气 哈希表 理论计算机科学 社交网络(社会语言学) 情报检索 二进制代码 大方坯过滤器 数据挖掘 二进制数 社会化媒体 算法 万维网 计算机安全 心理学 社会心理学 算术 数学
作者
Yang Xu,Lei Zhu,Jingjing Li,Fengling Li,Heng Tao Shen
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (7): 3541-3555
标识
DOI:10.1109/tkde.2024.3352255
摘要

Hashing-based recommender systems that represent users and items as binary hash codes are recently proposed to significantly improve time and space efficiency. However, the highly developed social media presents two major challenges to hashing-based recommendation algorithms. Firstly, the boundary between information producers and consumers becomes blurred, resulting in the rapid emergence of massive online content. Meanwhile, users' limited information consumption capacity inevitably causes further interaction sparsity. The inherent high sparsity of data leads to insufficient hash learning. Secondly, a considerable amount of online content becomes fast-moving consumer goods, such as short videos and news commentary, causing frequent changes in user interests and item popularity. To address the above problems, we propose a Temporal Social Graph Network Hashing (TSGNH) method for efficient recommendation, which generates binary hash codes of users and items through dynamic-adaptive aggregation on a constructed temporal social graph network. Specifically, we build a temporal social graph network to fully capture the social information widely existing in practical recommendation scenarios and propose a dynamic-adaptive aggregation method to capture long-term and short-term characters of users and items. Furthermore, different from the discrete optimization approaches used by existing hashing-based recommendation methods, we devise an end-to-end hashing learning approach that incorporates balanced and de-correlated constraints to learn compact and informative binary hash codes tailored for recommendation scenarios. Extensive experiments on three widely evaluated recommendation datasets demonstrate the superiority of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助花花采纳,获得10
1秒前
1秒前
1秒前
xinchaoma发布了新的文献求助10
2秒前
2秒前
害人精x完成签到,获得积分10
2秒前
2秒前
3秒前
科研通AI6应助小陈同学采纳,获得10
3秒前
Xylo完成签到,获得积分10
3秒前
勤快的树懒完成签到,获得积分10
3秒前
wang完成签到,获得积分10
4秒前
细心觅风发布了新的文献求助10
4秒前
周南完成签到,获得积分10
4秒前
liweb完成签到,获得积分10
4秒前
Magic麦完成签到,获得积分10
4秒前
5秒前
5秒前
mochen发布了新的文献求助10
5秒前
addd发布了新的文献求助10
6秒前
6秒前
传奇3应助廖智勇采纳,获得10
6秒前
7秒前
sharkmelon应助文献小当家采纳,获得10
7秒前
mingshi发布了新的文献求助10
7秒前
8秒前
细心觅风完成签到,获得积分10
8秒前
knight完成签到,获得积分10
8秒前
9秒前
小刘刘完成签到,获得积分10
9秒前
务实水池发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
charih发布了新的文献求助10
10秒前
10秒前
11秒前
善学以致用应助细心觅风采纳,获得10
11秒前
充电宝应助张志超采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661227
求助须知:如何正确求助?哪些是违规求助? 4837867
关于积分的说明 15094878
捐赠科研通 4819976
什么是DOI,文献DOI怎么找? 2579690
邀请新用户注册赠送积分活动 1533972
关于科研通互助平台的介绍 1492764