Temporal Social Graph Network Hashing for Efficient Recommendation

计算机科学 散列函数 推荐系统 图形 人气 哈希表 理论计算机科学 社交网络(社会语言学) 情报检索 二进制代码 大方坯过滤器 数据挖掘 二进制数 社会化媒体 算法 万维网 计算机安全 心理学 社会心理学 算术 数学
作者
Yang Xu,Lei Zhu,Jingjing Li,Fengling Li,Heng Tao Shen
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (7): 3541-3555
标识
DOI:10.1109/tkde.2024.3352255
摘要

Hashing-based recommender systems that represent users and items as binary hash codes are recently proposed to significantly improve time and space efficiency. However, the highly developed social media presents two major challenges to hashing-based recommendation algorithms. Firstly, the boundary between information producers and consumers becomes blurred, resulting in the rapid emergence of massive online content. Meanwhile, users' limited information consumption capacity inevitably causes further interaction sparsity. The inherent high sparsity of data leads to insufficient hash learning. Secondly, a considerable amount of online content becomes fast-moving consumer goods, such as short videos and news commentary, causing frequent changes in user interests and item popularity. To address the above problems, we propose a Temporal Social Graph Network Hashing (TSGNH) method for efficient recommendation, which generates binary hash codes of users and items through dynamic-adaptive aggregation on a constructed temporal social graph network. Specifically, we build a temporal social graph network to fully capture the social information widely existing in practical recommendation scenarios and propose a dynamic-adaptive aggregation method to capture long-term and short-term characters of users and items. Furthermore, different from the discrete optimization approaches used by existing hashing-based recommendation methods, we devise an end-to-end hashing learning approach that incorporates balanced and de-correlated constraints to learn compact and informative binary hash codes tailored for recommendation scenarios. Extensive experiments on three widely evaluated recommendation datasets demonstrate the superiority of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
番茄肌肉完成签到,获得积分10
刚刚
Jasper应助芋圆不圆采纳,获得10
2秒前
SHADY592完成签到,获得积分10
2秒前
2秒前
www发布了新的文献求助10
3秒前
中中发布了新的文献求助10
3秒前
白云苍狗应助高源伯采纳,获得10
4秒前
SHADY592发布了新的文献求助10
4秒前
桐桐应助土豪的醉香采纳,获得10
4秒前
Jasper应助羊肉泡馍采纳,获得10
6秒前
6秒前
7秒前
7秒前
JamesPei应助D&L采纳,获得10
7秒前
7秒前
9秒前
香蕉觅云应助SHADY592采纳,获得10
10秒前
喜悦代双完成签到,获得积分10
10秒前
10秒前
11秒前
陆拾荒发布了新的文献求助10
11秒前
旺旺完成签到,获得积分10
12秒前
坦率灵槐应助纪汶欣采纳,获得20
12秒前
奋斗刚发布了新的文献求助10
12秒前
sincere-辉发布了新的文献求助10
13秒前
14秒前
15秒前
Owen应助lilili采纳,获得10
15秒前
15秒前
15秒前
非了个凡完成签到 ,获得积分10
16秒前
YEGE发布了新的文献求助10
16秒前
王威完成签到,获得积分10
17秒前
华仔应助不见木棉采纳,获得10
17秒前
17秒前
pp发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
今后应助卡萨丁那看啥采纳,获得10
19秒前
aben050361发布了新的文献求助10
20秒前
乐乐应助番茄鱼采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648614
求助须知:如何正确求助?哪些是违规求助? 4775865
关于积分的说明 15044750
捐赠科研通 4807529
什么是DOI,文献DOI怎么找? 2570836
邀请新用户注册赠送积分活动 1527657
关于科研通互助平台的介绍 1486538