Temporal Social Graph Network Hashing for Efficient Recommendation

计算机科学 散列函数 推荐系统 图形 人气 哈希表 理论计算机科学 社交网络(社会语言学) 情报检索 二进制代码 大方坯过滤器 数据挖掘 二进制数 社会化媒体 算法 万维网 计算机安全 心理学 社会心理学 算术 数学
作者
Yang Xu,Lei Zhu,Jingjing Li,Fengling Li,Heng Tao Shen
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (7): 3541-3555
标识
DOI:10.1109/tkde.2024.3352255
摘要

Hashing-based recommender systems that represent users and items as binary hash codes are recently proposed to significantly improve time and space efficiency. However, the highly developed social media presents two major challenges to hashing-based recommendation algorithms. Firstly, the boundary between information producers and consumers becomes blurred, resulting in the rapid emergence of massive online content. Meanwhile, users' limited information consumption capacity inevitably causes further interaction sparsity. The inherent high sparsity of data leads to insufficient hash learning. Secondly, a considerable amount of online content becomes fast-moving consumer goods, such as short videos and news commentary, causing frequent changes in user interests and item popularity. To address the above problems, we propose a Temporal Social Graph Network Hashing (TSGNH) method for efficient recommendation, which generates binary hash codes of users and items through dynamic-adaptive aggregation on a constructed temporal social graph network. Specifically, we build a temporal social graph network to fully capture the social information widely existing in practical recommendation scenarios and propose a dynamic-adaptive aggregation method to capture long-term and short-term characters of users and items. Furthermore, different from the discrete optimization approaches used by existing hashing-based recommendation methods, we devise an end-to-end hashing learning approach that incorporates balanced and de-correlated constraints to learn compact and informative binary hash codes tailored for recommendation scenarios. Extensive experiments on three widely evaluated recommendation datasets demonstrate the superiority of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小张发布了新的文献求助10
2秒前
张贵虎完成签到 ,获得积分10
3秒前
JamesPei应助科研百晓生采纳,获得10
4秒前
自觉葶发布了新的文献求助10
5秒前
5秒前
6秒前
RaynorHank发布了新的文献求助10
6秒前
小二郎应助小张采纳,获得10
7秒前
8秒前
sssjjjxx完成签到,获得积分20
10秒前
Chen完成签到,获得积分10
11秒前
半_发布了新的文献求助10
11秒前
Lyra完成签到,获得积分10
11秒前
难搞了完成签到,获得积分10
12秒前
13秒前
欣喜的硬币完成签到 ,获得积分10
13秒前
13秒前
打打应助yjh采纳,获得10
13秒前
万能图书馆应助luke采纳,获得10
14秒前
14秒前
14秒前
16秒前
大模型应助半_采纳,获得10
17秒前
18秒前
18秒前
向阳发布了新的文献求助10
18秒前
18秒前
nanshou发布了新的文献求助10
19秒前
小龚小龚发布了新的文献求助10
19秒前
19秒前
简单的藏红花完成签到,获得积分10
19秒前
panyubo完成签到,获得积分20
20秒前
TANG发布了新的文献求助10
21秒前
可靠F发布了新的文献求助10
22秒前
小鱼完成签到,获得积分10
23秒前
天真依玉完成签到,获得积分10
23秒前
yjh发布了新的文献求助10
23秒前
24秒前
熊猫之歌完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646