A digital twin solution for floating offshore wind turbines validated using a full-scale prototype

涡轮机 空气动力学 计算机科学 海上风力发电 倾斜仪 风力发电 模拟 工程类 航空航天工程 地质学 电气工程 大地测量学
作者
Emmanuel Branlard,Jason Jonkman,Cameron Brown,Jiatian Zhang
出处
期刊:Wind energy science [Copernicus Publications]
卷期号:9 (1): 1-24 被引量:6
标识
DOI:10.5194/wes-9-1-2024
摘要

Abstract. In this work, we implement, verify, and validate a physics-based digital twin solution applied to a floating offshore wind turbine. The digital twin is validated using measurement data from the full-scale TetraSpar prototype. We focus on the estimation of the aerodynamic loads, wind speed, and section loads along the tower, with the aim of estimating the fatigue lifetime of the tower. Our digital twin solution integrates (1) a Kalman filter to estimate the structural states based on a linear model of the structure and measurements from the turbine, (2) an aerodynamic estimator, and (3) a physics-based virtual sensing procedure to obtain the loads along the tower. The digital twin relies on a set of measurements that are expected to be available on any existing wind turbine (power, pitch, rotor speed, and tower acceleration) and motion sensors that are likely to be standard measurements for a floating platform (inclinometers and GPS sensors). We explore two different pathways to obtain physics-based models: a suite of dedicated Python tools implemented as part of this work and the OpenFAST linearization feature. In our final version of the digital twin, we use components from both approaches. We perform different numerical experiments to verify the individual models of the digital twin. In this simulation realm, we obtain estimated damage equivalent loads of the tower fore–aft bending moment with an accuracy of approximately 5 % to 10 %. When comparing the digital twin estimations with the measurements from the TetraSpar prototype, the errors increased to 10 %–15 % on average. Overall, the accuracy of the results is promising and demonstrates the possibility of using digital twin solutions to estimate fatigue loads on floating offshore wind turbines. A natural continuation of this work would be to implement the monitoring and diagnostics aspect of the digital twin to inform operation and maintenance decisions. The digital twin solution is provided with examples as part of an open-source repository.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
咿咿发布了新的文献求助10
1秒前
zyyyyyu发布了新的文献求助10
1秒前
FR完成签到,获得积分10
1秒前
2秒前
甜甜芾完成签到,获得积分10
2秒前
小新完成签到,获得积分10
2秒前
共享精神应助Ashley采纳,获得10
2秒前
CodeCraft应助蔚蔚蓝天采纳,获得10
2秒前
左彦完成签到,获得积分10
3秒前
3秒前
刻苦的芝完成签到,获得积分10
3秒前
w2503完成签到,获得积分10
3秒前
小马甲应助凉笙墨染采纳,获得10
3秒前
JiangHb完成签到,获得积分10
3秒前
憨憨鱼完成签到,获得积分10
4秒前
乔一乔完成签到 ,获得积分10
4秒前
鲤鱼完成签到 ,获得积分10
4秒前
muzi完成签到,获得积分10
5秒前
5秒前
贪玩海之完成签到,获得积分10
5秒前
hkh发布了新的文献求助10
6秒前
腼腆的馒头完成签到,获得积分10
8秒前
大模型应助vinni采纳,获得10
8秒前
紫菜完成签到,获得积分10
8秒前
jinghong完成签到 ,获得积分10
9秒前
ihc完成签到,获得积分10
9秒前
魔幻凡梦完成签到,获得积分10
10秒前
正好完成签到,获得积分10
10秒前
10秒前
11秒前
白白SAMA123完成签到,获得积分10
11秒前
11秒前
大个应助汪爷爷采纳,获得10
12秒前
谷飞飞完成签到,获得积分10
13秒前
14秒前
liu完成签到,获得积分10
14秒前
15秒前
zzz完成签到,获得积分10
16秒前
咸鱼之王完成签到,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044