化学
亚胺
分子内力
异构化
共价键
共价有机骨架
光催化
光激发
光化学
接受者
有机化学
催化作用
凝聚态物理
物理
激发态
核物理学
作者
Daniel Streater,Eric R. Kennehan,Denan Wang,Christian Fiankor,Liangji Chen,Chongqing Yang,Bo Li,Daohua Liu,Faysal Ibrahim,Ive Hermans,Kevin L. Kohlstedt,Long Luo,Jian Zhang,Jier Huang
摘要
Two-dimensional covalent organic frameworks (COFs) are an emerging class of photocatalytic materials for solar energy conversion. In this work, we report a pair of structurally isomeric COFs with reversed imine bond directions, which leads to drastic differences in their physical properties, photophysical behaviors, and photocatalytic CO2 reduction performance after incorporating a Re(bpy)(CO)3Cl molecular catalyst through bipyridyl units on the COF backbone (Re-COF). Using the combination of ultrafast spectroscopy and theory, we attributed these differences to the polarized nature of the imine bond that imparts a preferential direction to intramolecular charge transfer (ICT) upon photoexcitation, where the bipyridyl unit acts as an electron acceptor in the forward imine case (f-COF) and as an electron donor in the reverse imine case (r-COF). These interactions ultimately lead the Re-f-COF isomer to function as an efficient CO2 reduction photocatalyst, while the Re-r-COF isomer shows minimal photocatalytic activity. These findings not only reveal the essential role linker chemistry plays in COF photophysical and photocatalytic properties but also offer a unique opportunity to design photosensitizers that can selectively direct charges.
科研通智能强力驱动
Strongly Powered by AbleSci AI