Interface Engineering for Highly Efficient Perovskite Photovoltaics

光伏 钙钛矿(结构) 接口(物质) 材料科学 工程物理 光电子学 光伏系统 电气工程 工程类 化学工程 复合材料 毛细管数 毛细管作用
作者
Nga Phung,Andrea Bracesco,Mariadriana Creatore
出处
期刊:Meeting abstracts 卷期号:MA2023-02 (44): 2177-2177
标识
DOI:10.1149/ma2023-02442177mtgabs
摘要

In the past decade, major progress has taken place in the field of metal halide perovskite photovoltaics (PV), as witnessed by the recently achieved conversion efficiency of 25.7% [1] and the concrete opportunity to go beyond the thermodynamic limit of single junction PV by means of perovskite/ crystalline silicon tandems, with the very recent record of 33.2% [2]. Among the most recent efforts towards further development of perovskite PV and subsequent commercialization, strategies ranging from perovskite surface passivation and compositional engineering to thin film encapsulation, contribute to suppress the perovskite absorber and device instability to moisture ingress. In parallel, research efforts presently investigate the role of inorganic charge transport layers (CTLs) next to the one of the most commonly used organic CTLs, such as poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA), [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) or C60. The inorganic layers are acknowledged to impart thermal and mechanical stability to the device, as well as to improve device efficiency yield. In this contribution, our recent research on atomic layer deposited (ALD) selective CTLs for metal halide perovskite PV [3] is reviewed by addressing two case studies, namely, SnO 2 thin films, selective towards electron transport, and NiO thin films, selective towards hole transport. ALD is selected as deposition technology because of its merit of ultimate control over film thickness and conformality. ALD SnO 2 [4] . based on cycles of tetrakis(dimethylamido)-tin and H 2 O as precursor and co-reactant, respectively, is the state-of-the art in both p-i-n perovskite single junction as well as tandem perovskite/crystalline silicon and perovskite/CIGS PV. Its presence is key to the device thermal and mechanical stability, to prevent humidity ingress in the device and suppress damage to the fullerene (PCBM or C60) during the sputtering of the transparent front contact. Moreover, SnO 2 plays a key role in perovskite/perovskite tandem PV, where it serves as solvent barrier to prevent damage of the wide-band gap perovskite sub-cell during solution processing of the narrow-band gap perovskite top cell. In parallel, our in situ studies by means of IR spectroscopy during ALD of SnO 2 on perovskite/fullerene disclose the reason behind the difference in device conversion efficiency when SnO 2 is processed either on PCBM or C60, i.e. the devices based on PCBM underperform those based on C60 by 3% absolute difference. Specifically, the Sn-precursor is responsible for the modification of the ester group in PCBM thereby affecting the PCBM/perovskite interface and device efficiency. ALD NiO thin (7 nm) films [5], based on cycles of bis(methylcyclopentadienyl)nickel and H 2 O as precursor and co-reactant, respectively, are found to impart stability to the perovskite device under acceleration test at 85°C, with 80% retention of the initial conversion efficiency after 300 hours at 1 sun illumination. At the same time, the presence of the phosphonic acid-based self-assembled monolayer (SAM), is essential to engineer an almost lossless (i.e., in terms of suppression of charge recombination) NiO/SAM/perovskite interface. Also, the SAM homogeneity and surface coverage on NiO improve with respect to direct SAM processing on ITO (see figure), as witnessed by transmission electron microscopy (TEM) and conductive atomic force microscopy. This result is explained in terms of chemisorption reactions between SAM phosphonic acid groups and NiO hydroxyl groups. The SAM homogeneity on NiO leads to higher shunt resistance in the device with respect to the one with SAM directly processed on ITO. Finally, the combination of NiO and SAM results in a narrower distribution of device performance reaching more than 20% efficient champion device. In parallel, two-terminal perovskite/crystalline silicon tandem devices with an ITO/NiO/SAM tunnel recombination junction (TRJ) exhibit a better device yield with respect to tandem devices with an ITO/SAM TRJ, i.e. the standard deviation decreases from 4.6% with ITO/SAM to 2.0% with ITO/NiO/SAM. [1] Green et al ., Prog. Photovolt. Res. Appl. 30, 687 (2022) [2] https://www.kaust.edu.sa/news/kaust-team-sets-world-record-for-tandem-solar-cell-efficiency [3] Zardetto et al ., Sustainable Energy & Fuels 1, 30 (2017) [4] Bracesco et al ., J. Vac. Sci. Technol. A, 38(6), 063206-1 (2020) [5] Phung et al ., ACS Applied Materials and Interfaces. 14(1), 2166 (2022) [6] Phung et al ., submitted to Sol. Mat. (2023) Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾建完成签到 ,获得积分10
刚刚
材1完成签到 ,获得积分10
1秒前
独孤完成签到 ,获得积分10
9秒前
wo_qq111完成签到 ,获得积分10
13秒前
13秒前
July完成签到,获得积分0
13秒前
hyjcs完成签到,获得积分10
15秒前
喝酸奶不舔盖完成签到 ,获得积分10
15秒前
英俊的铭应助文昊采纳,获得10
16秒前
兴奋的定帮完成签到 ,获得积分10
21秒前
duxiao完成签到 ,获得积分10
23秒前
小九完成签到,获得积分10
23秒前
clocksoar完成签到,获得积分10
23秒前
wang5cl完成签到,获得积分10
23秒前
疯狂的迪子完成签到 ,获得积分10
25秒前
沙里飞完成签到 ,获得积分10
25秒前
小陈完成签到,获得积分10
26秒前
吴晓娟完成签到 ,获得积分10
27秒前
包子牛奶发布了新的文献求助30
27秒前
sdbz001完成签到,获得积分10
28秒前
mumuyayaguoguo完成签到 ,获得积分10
29秒前
liciky完成签到 ,获得积分10
32秒前
zenabia完成签到 ,获得积分10
32秒前
于芋菊给于芋菊的求助进行了留言
32秒前
科研通AI2S应助忧郁衬衫采纳,获得10
35秒前
Huay完成签到 ,获得积分10
37秒前
自由的无色完成签到 ,获得积分10
41秒前
42秒前
爱学习的悦悦子完成签到 ,获得积分10
43秒前
小竹完成签到 ,获得积分10
43秒前
xiaofenzi完成签到,获得积分10
44秒前
顺利问玉完成签到 ,获得积分10
45秒前
Minjalee完成签到,获得积分0
47秒前
元宝完成签到 ,获得积分10
48秒前
lixinyue完成签到 ,获得积分10
50秒前
dhdhg完成签到 ,获得积分10
53秒前
Alex-Song完成签到 ,获得积分0
57秒前
jiao完成签到,获得积分10
58秒前
keke完成签到,获得积分10
58秒前
gy完成签到 ,获得积分20
59秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171668
求助须知:如何正确求助?哪些是违规求助? 2822477
关于积分的说明 7939353
捐赠科研通 2483134
什么是DOI,文献DOI怎么找? 1322990
科研通“疑难数据库(出版商)”最低求助积分说明 633826
版权声明 602647