已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Interface Engineering for Highly Efficient Perovskite Photovoltaics

光伏 钙钛矿(结构) 接口(物质) 材料科学 工程物理 光电子学 光伏系统 电气工程 工程类 化学工程 复合材料 毛细管数 毛细管作用
作者
Nga Phung,Andrea Bracesco,Mariadriana Creatore
出处
期刊:Meeting abstracts 卷期号:MA2023-02 (44): 2177-2177
标识
DOI:10.1149/ma2023-02442177mtgabs
摘要

In the past decade, major progress has taken place in the field of metal halide perovskite photovoltaics (PV), as witnessed by the recently achieved conversion efficiency of 25.7% [1] and the concrete opportunity to go beyond the thermodynamic limit of single junction PV by means of perovskite/ crystalline silicon tandems, with the very recent record of 33.2% [2]. Among the most recent efforts towards further development of perovskite PV and subsequent commercialization, strategies ranging from perovskite surface passivation and compositional engineering to thin film encapsulation, contribute to suppress the perovskite absorber and device instability to moisture ingress. In parallel, research efforts presently investigate the role of inorganic charge transport layers (CTLs) next to the one of the most commonly used organic CTLs, such as poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA), [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) or C60. The inorganic layers are acknowledged to impart thermal and mechanical stability to the device, as well as to improve device efficiency yield. In this contribution, our recent research on atomic layer deposited (ALD) selective CTLs for metal halide perovskite PV [3] is reviewed by addressing two case studies, namely, SnO 2 thin films, selective towards electron transport, and NiO thin films, selective towards hole transport. ALD is selected as deposition technology because of its merit of ultimate control over film thickness and conformality. ALD SnO 2 [4] . based on cycles of tetrakis(dimethylamido)-tin and H 2 O as precursor and co-reactant, respectively, is the state-of-the art in both p-i-n perovskite single junction as well as tandem perovskite/crystalline silicon and perovskite/CIGS PV. Its presence is key to the device thermal and mechanical stability, to prevent humidity ingress in the device and suppress damage to the fullerene (PCBM or C60) during the sputtering of the transparent front contact. Moreover, SnO 2 plays a key role in perovskite/perovskite tandem PV, where it serves as solvent barrier to prevent damage of the wide-band gap perovskite sub-cell during solution processing of the narrow-band gap perovskite top cell. In parallel, our in situ studies by means of IR spectroscopy during ALD of SnO 2 on perovskite/fullerene disclose the reason behind the difference in device conversion efficiency when SnO 2 is processed either on PCBM or C60, i.e. the devices based on PCBM underperform those based on C60 by 3% absolute difference. Specifically, the Sn-precursor is responsible for the modification of the ester group in PCBM thereby affecting the PCBM/perovskite interface and device efficiency. ALD NiO thin (7 nm) films [5], based on cycles of bis(methylcyclopentadienyl)nickel and H 2 O as precursor and co-reactant, respectively, are found to impart stability to the perovskite device under acceleration test at 85°C, with 80% retention of the initial conversion efficiency after 300 hours at 1 sun illumination. At the same time, the presence of the phosphonic acid-based self-assembled monolayer (SAM), is essential to engineer an almost lossless (i.e., in terms of suppression of charge recombination) NiO/SAM/perovskite interface. Also, the SAM homogeneity and surface coverage on NiO improve with respect to direct SAM processing on ITO (see figure), as witnessed by transmission electron microscopy (TEM) and conductive atomic force microscopy. This result is explained in terms of chemisorption reactions between SAM phosphonic acid groups and NiO hydroxyl groups. The SAM homogeneity on NiO leads to higher shunt resistance in the device with respect to the one with SAM directly processed on ITO. Finally, the combination of NiO and SAM results in a narrower distribution of device performance reaching more than 20% efficient champion device. In parallel, two-terminal perovskite/crystalline silicon tandem devices with an ITO/NiO/SAM tunnel recombination junction (TRJ) exhibit a better device yield with respect to tandem devices with an ITO/SAM TRJ, i.e. the standard deviation decreases from 4.6% with ITO/SAM to 2.0% with ITO/NiO/SAM. [1] Green et al ., Prog. Photovolt. Res. Appl. 30, 687 (2022) [2] https://www.kaust.edu.sa/news/kaust-team-sets-world-record-for-tandem-solar-cell-efficiency [3] Zardetto et al ., Sustainable Energy & Fuels 1, 30 (2017) [4] Bracesco et al ., J. Vac. Sci. Technol. A, 38(6), 063206-1 (2020) [5] Phung et al ., ACS Applied Materials and Interfaces. 14(1), 2166 (2022) [6] Phung et al ., submitted to Sol. Mat. (2023) Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
几两完成签到 ,获得积分10
刚刚
1秒前
1秒前
paradox完成签到 ,获得积分10
2秒前
耶耶发布了新的文献求助30
2秒前
AZN完成签到 ,获得积分10
3秒前
碗碗完成签到,获得积分10
3秒前
自由小萱完成签到,获得积分10
4秒前
haohaohao发布了新的文献求助10
5秒前
zffang发布了新的文献求助10
6秒前
牛超完成签到 ,获得积分10
6秒前
橙橙发布了新的文献求助30
7秒前
稳重岩完成签到 ,获得积分10
7秒前
9秒前
哈基米德应助科研通管家采纳,获得20
10秒前
Ak完成签到,获得积分0
10秒前
Owen应助科研通管家采纳,获得30
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
11秒前
GingerF应助科研通管家采纳,获得50
11秒前
哈基米德应助科研通管家采纳,获得20
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
哈基米德应助科研通管家采纳,获得20
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
小蘑菇应助qianqina采纳,获得10
12秒前
感动手链完成签到,获得积分10
14秒前
555完成签到,获得积分10
16秒前
Fxy完成签到 ,获得积分10
17秒前
挚智完成签到 ,获得积分10
19秒前
20秒前
haohaohao完成签到,获得积分10
20秒前
sunyt完成签到,获得积分10
21秒前
情怀应助Yi采纳,获得10
21秒前
浮游应助远方采纳,获得10
23秒前
不可以哦完成签到 ,获得积分10
23秒前
24秒前
rick3455完成签到 ,获得积分10
25秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345304
求助须知:如何正确求助?哪些是违规求助? 4480383
关于积分的说明 13945939
捐赠科研通 4377758
什么是DOI,文献DOI怎么找? 2405455
邀请新用户注册赠送积分活动 1398029
关于科研通互助平台的介绍 1370386