Feature extraction of particle morphologies of pharmaceutical excipients from scanning electron microscope images using convolutional neural networks

卷积神经网络 人工智能 扫描电子显微镜 赋形剂 模式识别(心理学) 粒子(生态学) 计算机科学 人工神经网络 生物系统 聚类分析 投影(关系代数) 材料科学 色谱法 化学 算法 复合材料 生物 海洋学 地质学
作者
Hiroaki Iwata,Yoshihiro Hayashi,Takuto Koyama,Aki Hasegawa,Kosuke Ohgi,Ippei Kobayashi,Yasushi Okuno
出处
期刊:International Journal of Pharmaceutics [Elsevier]
卷期号:653: 123873-123873 被引量:1
标识
DOI:10.1016/j.ijpharm.2024.123873
摘要

Scanning electron microscopy (SEM) images are the most widely used tool for evaluating particle morphology; however, quantitative evaluation using SEM images is time-consuming and often neglected. In this study, we aimed to extract features related to particle morphology of pharmaceutical excipients from SEM images using a convolutional neural network (CNN). SEM images of 67 excipients were acquired and used as models. A classification CNN model of the excipients was constructed based on the SEM images. Further, features were extracted from the middle layer of this CNN model, and the data was compressed to two dimensions using uniform manifold approximation and projection. Lastly, hierarchical clustering analysis (HCA) was performed to categorize the excipients into several clusters and identify similarities among the samples. The classification CNN model showed high accuracy, allowing each excipient to be identified with a high degree of accuracy. HCA revealed that the 67 excipients were classified into seven clusters. Additionally, the particle morphologies of excipients belonging to the same cluster were found to be very similar. These results suggest that CNN models are useful tools for extracting information and identifying similarities among the particle morphologies of excipients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助勾勾1991采纳,获得10
1秒前
研友_VZG7GZ应助勾勾1991采纳,获得20
1秒前
充电宝应助勾勾1991采纳,获得20
1秒前
1秒前
Lucas应助勾勾1991采纳,获得10
1秒前
汉堡包应助jerry采纳,获得10
1秒前
习习应助changmengying采纳,获得10
2秒前
2秒前
高贵花瓣完成签到,获得积分10
2秒前
161319141完成签到 ,获得积分10
2秒前
丰富的世界完成签到 ,获得积分10
2秒前
高兴英完成签到,获得积分10
2秒前
美好嘉熙完成签到,获得积分10
2秒前
3秒前
清浅发布了新的文献求助10
3秒前
无辜的傲安完成签到 ,获得积分10
3秒前
Jinji发布了新的文献求助200
3秒前
萍子完成签到,获得积分10
3秒前
Ll发布了新的文献求助10
3秒前
3秒前
dracovu完成签到,获得积分10
4秒前
ZTT发布了新的文献求助10
4秒前
5秒前
cocobear完成签到 ,获得积分10
5秒前
啤酒半斤完成签到,获得积分10
5秒前
Hey发布了新的文献求助10
5秒前
6秒前
牧云完成签到 ,获得积分10
6秒前
7秒前
7秒前
小二郎应助xhy采纳,获得10
7秒前
zhonghbush发布了新的文献求助10
7秒前
萍子发布了新的文献求助10
7秒前
lovesonic完成签到,获得积分10
7秒前
科研通AI5应助tyty采纳,获得10
7秒前
Orange应助路之遥兮采纳,获得10
7秒前
完美世界应助123采纳,获得30
8秒前
充电宝应助zengli采纳,获得10
8秒前
LiDaYang完成签到,获得积分10
8秒前
努力学习发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672