Feature extraction of particle morphologies of pharmaceutical excipients from scanning electron microscope images using convolutional neural networks

卷积神经网络 人工智能 扫描电子显微镜 赋形剂 模式识别(心理学) 粒子(生态学) 计算机科学 人工神经网络 生物系统 聚类分析 投影(关系代数) 材料科学 色谱法 化学 算法 复合材料 生物 海洋学 地质学
作者
Hiroaki Iwata,Yoshihiro Hayashi,Takuto Koyama,Aki Hasegawa,Kosuke Ohgi,Ippei Kobayashi,Yasushi Okuno
出处
期刊:International Journal of Pharmaceutics [Elsevier BV]
卷期号:653: 123873-123873 被引量:1
标识
DOI:10.1016/j.ijpharm.2024.123873
摘要

Scanning electron microscopy (SEM) images are the most widely used tool for evaluating particle morphology; however, quantitative evaluation using SEM images is time-consuming and often neglected. In this study, we aimed to extract features related to particle morphology of pharmaceutical excipients from SEM images using a convolutional neural network (CNN). SEM images of 67 excipients were acquired and used as models. A classification CNN model of the excipients was constructed based on the SEM images. Further, features were extracted from the middle layer of this CNN model, and the data was compressed to two dimensions using uniform manifold approximation and projection. Lastly, hierarchical clustering analysis (HCA) was performed to categorize the excipients into several clusters and identify similarities among the samples. The classification CNN model showed high accuracy, allowing each excipient to be identified with a high degree of accuracy. HCA revealed that the 67 excipients were classified into seven clusters. Additionally, the particle morphologies of excipients belonging to the same cluster were found to be very similar. These results suggest that CNN models are useful tools for extracting information and identifying similarities among the particle morphologies of excipients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李爱国应助enndyou采纳,获得10
1秒前
千跃应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
千跃应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
Ava应助犹豫大侠采纳,获得10
1秒前
liz_完成签到,获得积分10
1秒前
Jasper应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
summer3moon应助科研通管家采纳,获得10
2秒前
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
小树完成签到,获得积分10
3秒前
sya发布了新的文献求助10
4秒前
Santiana发布了新的文献求助10
6秒前
6秒前
小树发布了新的文献求助10
6秒前
7秒前
7秒前
所所应助跳跃凡桃采纳,获得10
8秒前
9秒前
10秒前
10秒前
11秒前
13秒前
fkdbdy完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
15秒前
Santiana完成签到,获得积分20
17秒前
贪狼先森发布了新的文献求助10
18秒前
姜姜完成签到 ,获得积分10
18秒前
19秒前
19秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956275
求助须知:如何正确求助?哪些是违规求助? 3502464
关于积分的说明 11107805
捐赠科研通 3233133
什么是DOI,文献DOI怎么找? 1787170
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802093