Gliding strategy analysis and optimisation of underwater gliders balancing energy consumption, motion accuracy and voyage velocity

水下滑翔机 海洋工程 能源消耗 水下 运动(物理) 环境科学 计算机科学 控制理论(社会学) 地质学 工程类 滑翔机 海洋学 人工智能 电气工程 控制(管理)
作者
Lijie Tan,Hongyu Wu,Zhihong Jiang,Qingjian Wu,Yunqiang Yang,Shaoze Yan
出处
期刊:Ships and Offshore Structures [Taylor & Francis]
卷期号:: 1-13 被引量:1
标识
DOI:10.1080/17445302.2024.2312722
摘要

This paper presents a novel gliding strategy for underwater gliders, which can better balance the glider energy consumption, motion accuracy and voyage velocity. This strategy is designed according to the performance analysis results of the glider under the conventional gliding strategy. In the shallow water areas with the higher current intensity, the glider adjusts the net buoyancy to a larger value, which can ensure the higher voyage velocity and motion accuracy. In the deep water areas with the smaller current intensity, the glider adjusts the net buoyancy to a smaller value, which can ensure the higher energy utilisation rate. In the different water areas, the movable mass block translation amount will also be adjusted. To improve the performance analysis efficiency, the radial basis function (RBF) neural network is employed to establish surrogate models of the glider dynamic model. Then, we carry out the glider control parameter optimisation using the surrogate models and non-dominated sorting genetic algorithm II. The comparison research between the conventional gliding strategy and the novel gliding strategy shows that the novel gliding strategy can make the glider have the higher motion accuracy under the specific energy utilisation rate. Besides, the novel gliding strategy will not affect the optimal solution of the glider voyage velocity and energy utilisation rate, and it improves the glider motion accuracy by mainly reducing the voyage velocity. The advantage of the novel strategy is mainly to improve the glider motion accuracy, which may provide certain guidance for the actual application of underwater gliders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYY完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
英俊绿蓉完成签到,获得积分10
1秒前
所所应助风中的怜阳采纳,获得10
1秒前
cdercder应助涵涵采纳,获得10
1秒前
Tetrahydron发布了新的文献求助10
1秒前
1秒前
MOON完成签到,获得积分10
2秒前
啦啦咔嘞完成签到,获得积分10
3秒前
Jasper应助Jy采纳,获得10
3秒前
KKKZ发布了新的文献求助10
3秒前
英俊绿蓉发布了新的文献求助10
4秒前
4秒前
芝士草莓蛋挞完成签到 ,获得积分10
4秒前
魔幻安雁发布了新的文献求助10
4秒前
旭日东升发布了新的文献求助10
5秒前
星辰大海应助称心寒松采纳,获得10
6秒前
星辰大海应助超帅雁露采纳,获得10
7秒前
8秒前
dangdangdang发布了新的文献求助10
8秒前
W雩发布了新的文献求助10
8秒前
完美世界应助科研小狗采纳,获得10
8秒前
9秒前
11秒前
11秒前
旭日东升完成签到,获得积分10
11秒前
舒适乐儿发布了新的文献求助10
13秒前
13秒前
Rain发布了新的文献求助10
14秒前
花开富贵发布了新的文献求助10
15秒前
15秒前
xiaojinzi发布了新的文献求助10
15秒前
16秒前
16秒前
张弘发布了新的文献求助10
16秒前
不知名混子完成签到 ,获得积分10
16秒前
噗尼噗尼完成签到,获得积分10
16秒前
Tetrahydron完成签到,获得积分10
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740937
求助须知:如何正确求助?哪些是违规求助? 3283720
关于积分的说明 10036381
捐赠科研通 3000455
什么是DOI,文献DOI怎么找? 1646510
邀请新用户注册赠送积分活动 783711
科研通“疑难数据库(出版商)”最低求助积分说明 750427