What can we learn from the AV crashes? – An association rule analysis for identifying the contributing risky factors

毒物控制 人为因素与人体工程学 职业安全与健康 伤害预防 联想(心理学) 自杀预防 工程类 运输工程 法律工程学 环境卫生 计算机安全 心理学 计算机科学 应用心理学 医学 病理 心理治疗师
作者
Pei Liu,Yanyong Guo,Pan Liu,Hongliang Ding,Jiandong Cao,Jibiao Zhou,Zhongxiang Feng
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:199: 107492-107492
标识
DOI:10.1016/j.aap.2024.107492
摘要

The objective of this study is to explore the contributing risky factors to Autonomous Vehicle (AV) crashes and their interdependencies. AV crash data between 2015 and 2023 were collected from the autonomous vehicle collision report published by California Department of Motor Vehicles (DMV). AV crashes were categorized into four types based on vehicle damage. AV crashes features including crash location and time, driving mode, vehicle movements, crash type and vehicle damage, traffic conditions, and among others were used as potential risk factors. Association Rule Mining methods (ARM) were utilized to identify sets of contributing risky factors that often occur together in AV crashes. Several association rules suggest that AV crashes result from complex interactions between road factors, vehicle factors, and environmental conditions. No damage and minor crashes are more likely affected by the road features and traffic conditions. In contrast, the movements of vehicles are more sensitive to severe AV crashes. Improper vehicle operations could increase the probability of severe AV crashes. In addition, results suggest that adverse weather conditions could increase the damage of AV crashes. AV interactions with roadside infrastructure or vulnerable road users on wet road surfaces during the night could potentially lead to significant loss of life and property. Furthermore, the safety effects of vehicle mode on the different AV crash damage are revealed. In some contexts, the autonomous driving mode can mitigate the risk of crash damages compared with conventional driving mode. The findings of this study should be indicative of policy measures and engineering countermeasures that improve the safety and efficiency of AV on the road, ultimately improving road transportation's overall safety and reliability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sulyspr发布了新的文献求助10
刚刚
Night完成签到,获得积分10
刚刚
1秒前
着急的小松鼠完成签到,获得积分10
1秒前
1秒前
Qianyun完成签到,获得积分10
2秒前
2秒前
刘小天完成签到,获得积分10
2秒前
2秒前
2秒前
dongjh发布了新的文献求助10
2秒前
星辰大海应助复杂易形采纳,获得10
3秒前
狄秋白完成签到,获得积分10
3秒前
3秒前
4秒前
zhanfan321完成签到,获得积分10
5秒前
刘成发布了新的文献求助30
5秒前
逗逗完成签到,获得积分10
5秒前
好好好完成签到 ,获得积分10
5秒前
5秒前
华仔应助WenyHe采纳,获得10
5秒前
顺利的伊完成签到,获得积分10
6秒前
sunshine发布了新的文献求助10
6秒前
就叫十一吧完成签到,获得积分10
6秒前
科研通AI6应助WestHoter采纳,获得10
7秒前
小二郎应助笨蛋小章采纳,获得10
7秒前
浮游应助研友_LapYN8采纳,获得10
7秒前
Akim应助刘小天采纳,获得10
7秒前
延胡索完成签到,获得积分10
7秒前
killer10831完成签到,获得积分10
8秒前
8秒前
391X小king发布了新的文献求助10
8秒前
要努力鸭发布了新的文献求助10
8秒前
而已完成签到,获得积分10
9秒前
dayaya完成签到,获得积分10
9秒前
10秒前
汕头凯奇完成签到,获得积分10
10秒前
10秒前
10秒前
pokemeow完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645431
求助须知:如何正确求助?哪些是违规求助? 4768803
关于积分的说明 15028908
捐赠科研通 4804012
什么是DOI,文献DOI怎么找? 2568656
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485570