What can we learn from the AV crashes? – An association rule analysis for identifying the contributing risky factors

毒物控制 人为因素与人体工程学 职业安全与健康 伤害预防 联想(心理学) 自杀预防 工程类 运输工程 法律工程学 环境卫生 计算机安全 心理学 计算机科学 应用心理学 医学 病理 心理治疗师
作者
Pei Liu,Yanyong Guo,Pan Liu,Hongliang Ding,Jiandong Cao,Jibiao Zhou,Zhongxiang Feng
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:199: 107492-107492
标识
DOI:10.1016/j.aap.2024.107492
摘要

The objective of this study is to explore the contributing risky factors to Autonomous Vehicle (AV) crashes and their interdependencies. AV crash data between 2015 and 2023 were collected from the autonomous vehicle collision report published by California Department of Motor Vehicles (DMV). AV crashes were categorized into four types based on vehicle damage. AV crashes features including crash location and time, driving mode, vehicle movements, crash type and vehicle damage, traffic conditions, and among others were used as potential risk factors. Association Rule Mining methods (ARM) were utilized to identify sets of contributing risky factors that often occur together in AV crashes. Several association rules suggest that AV crashes result from complex interactions between road factors, vehicle factors, and environmental conditions. No damage and minor crashes are more likely affected by the road features and traffic conditions. In contrast, the movements of vehicles are more sensitive to severe AV crashes. Improper vehicle operations could increase the probability of severe AV crashes. In addition, results suggest that adverse weather conditions could increase the damage of AV crashes. AV interactions with roadside infrastructure or vulnerable road users on wet road surfaces during the night could potentially lead to significant loss of life and property. Furthermore, the safety effects of vehicle mode on the different AV crash damage are revealed. In some contexts, the autonomous driving mode can mitigate the risk of crash damages compared with conventional driving mode. The findings of this study should be indicative of policy measures and engineering countermeasures that improve the safety and efficiency of AV on the road, ultimately improving road transportation's overall safety and reliability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
包容新蕾完成签到 ,获得积分10
1秒前
逸风望完成签到,获得积分10
1秒前
2秒前
阿仔完成签到,获得积分10
2秒前
___赵发布了新的文献求助10
3秒前
茶米发布了新的文献求助10
4秒前
4秒前
科研通AI6应助内卷与外包采纳,获得10
9秒前
阿屁屁猪完成签到,获得积分10
9秒前
黄大完成签到,获得积分10
9秒前
冬冬完成签到,获得积分10
10秒前
hhhhhhhh发布了新的文献求助10
10秒前
11秒前
duoduo7发布了新的文献求助10
11秒前
Mic发布了新的文献求助10
11秒前
黑马王子发布了新的文献求助10
12秒前
14秒前
16秒前
tutou发布了新的文献求助10
18秒前
惊艳发布了新的文献求助20
18秒前
共享精神应助迷路的台灯采纳,获得10
18秒前
19秒前
烦恼全吴完成签到 ,获得积分10
19秒前
EnjieLin完成签到,获得积分10
19秒前
20秒前
Mic完成签到,获得积分10
21秒前
超级翰完成签到 ,获得积分10
21秒前
科研通AI2S应助sc采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
shuxi完成签到,获得积分10
23秒前
稳重晓亦完成签到,获得积分10
24秒前
wxyshare应助wv采纳,获得10
25秒前
zyx完成签到,获得积分10
26秒前
wsc应助无情南琴采纳,获得20
26秒前
27秒前
28秒前
斯文败类应助水下月采纳,获得10
28秒前
FashionBoy应助无聊采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536782
求助须知:如何正确求助?哪些是违规求助? 4624440
关于积分的说明 14592026
捐赠科研通 4564913
什么是DOI,文献DOI怎么找? 2502020
邀请新用户注册赠送积分活动 1480820
关于科研通互助平台的介绍 1452003