亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

What can we learn from the AV crashes? – An association rule analysis for identifying the contributing risky factors

毒物控制 人为因素与人体工程学 职业安全与健康 伤害预防 联想(心理学) 自杀预防 工程类 运输工程 法律工程学 环境卫生 计算机安全 心理学 计算机科学 应用心理学 医学 病理 心理治疗师
作者
Pei Liu,Yanyong Guo,Pan Liu,Hongliang Ding,Jiandong Cao,Jibiao Zhou,Zhongxiang Feng
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:199: 107492-107492
标识
DOI:10.1016/j.aap.2024.107492
摘要

The objective of this study is to explore the contributing risky factors to Autonomous Vehicle (AV) crashes and their interdependencies. AV crash data between 2015 and 2023 were collected from the autonomous vehicle collision report published by California Department of Motor Vehicles (DMV). AV crashes were categorized into four types based on vehicle damage. AV crashes features including crash location and time, driving mode, vehicle movements, crash type and vehicle damage, traffic conditions, and among others were used as potential risk factors. Association Rule Mining methods (ARM) were utilized to identify sets of contributing risky factors that often occur together in AV crashes. Several association rules suggest that AV crashes result from complex interactions between road factors, vehicle factors, and environmental conditions. No damage and minor crashes are more likely affected by the road features and traffic conditions. In contrast, the movements of vehicles are more sensitive to severe AV crashes. Improper vehicle operations could increase the probability of severe AV crashes. In addition, results suggest that adverse weather conditions could increase the damage of AV crashes. AV interactions with roadside infrastructure or vulnerable road users on wet road surfaces during the night could potentially lead to significant loss of life and property. Furthermore, the safety effects of vehicle mode on the different AV crash damage are revealed. In some contexts, the autonomous driving mode can mitigate the risk of crash damages compared with conventional driving mode. The findings of this study should be indicative of policy measures and engineering countermeasures that improve the safety and efficiency of AV on the road, ultimately improving road transportation's overall safety and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄花菜完成签到 ,获得积分10
10秒前
通科研完成签到 ,获得积分10
11秒前
13秒前
HEIKU应助无私的含海采纳,获得10
17秒前
20秒前
爱撒娇的曼凝完成签到,获得积分10
29秒前
8R60d8应助科研通管家采纳,获得10
30秒前
1分钟前
自由隶发布了新的文献求助10
1分钟前
自由隶完成签到,获得积分10
1分钟前
滕皓轩完成签到 ,获得积分10
1分钟前
怡然的醉易完成签到 ,获得积分10
1分钟前
自由的中蓝完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
8R60d8应助科研通管家采纳,获得10
2分钟前
8R60d8应助科研通管家采纳,获得10
2分钟前
8R60d8应助科研通管家采纳,获得10
2分钟前
2分钟前
阿豪要发文章完成签到 ,获得积分10
2分钟前
汉堡包应助Logan采纳,获得10
3分钟前
3分钟前
Logan发布了新的文献求助10
3分钟前
Logan完成签到,获得积分10
3分钟前
快乐小狗发布了新的文献求助10
4分钟前
8R60d8应助科研通管家采纳,获得10
4分钟前
8R60d8应助科研通管家采纳,获得10
4分钟前
8R60d8应助科研通管家采纳,获得10
4分钟前
ding应助快乐小狗采纳,获得10
4分钟前
月儿完成签到 ,获得积分10
5分钟前
6分钟前
淡定落雁发布了新的文献求助30
6分钟前
大模型应助枯藤老柳树采纳,获得10
7分钟前
8分钟前
8分钟前
fuueer完成签到 ,获得积分10
8分钟前
吉祥如意完成签到,获得积分20
9分钟前
肆肆完成签到,获得积分10
10分钟前
吉祥如意发布了新的文献求助50
10分钟前
12分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787970
关于积分的说明 7784214
捐赠科研通 2444073
什么是DOI,文献DOI怎么找? 1299719
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997