What can we learn from the AV crashes? – An association rule analysis for identifying the contributing risky factors

毒物控制 人为因素与人体工程学 职业安全与健康 伤害预防 联想(心理学) 自杀预防 工程类 运输工程 法律工程学 环境卫生 计算机安全 心理学 计算机科学 应用心理学 医学 病理 心理治疗师
作者
Pei Liu,Yanyong Guo,Pan Liu,Hongliang Ding,Jiandong Cao,Jibiao Zhou,Zhongxiang Feng
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:199: 107492-107492
标识
DOI:10.1016/j.aap.2024.107492
摘要

The objective of this study is to explore the contributing risky factors to Autonomous Vehicle (AV) crashes and their interdependencies. AV crash data between 2015 and 2023 were collected from the autonomous vehicle collision report published by California Department of Motor Vehicles (DMV). AV crashes were categorized into four types based on vehicle damage. AV crashes features including crash location and time, driving mode, vehicle movements, crash type and vehicle damage, traffic conditions, and among others were used as potential risk factors. Association Rule Mining methods (ARM) were utilized to identify sets of contributing risky factors that often occur together in AV crashes. Several association rules suggest that AV crashes result from complex interactions between road factors, vehicle factors, and environmental conditions. No damage and minor crashes are more likely affected by the road features and traffic conditions. In contrast, the movements of vehicles are more sensitive to severe AV crashes. Improper vehicle operations could increase the probability of severe AV crashes. In addition, results suggest that adverse weather conditions could increase the damage of AV crashes. AV interactions with roadside infrastructure or vulnerable road users on wet road surfaces during the night could potentially lead to significant loss of life and property. Furthermore, the safety effects of vehicle mode on the different AV crash damage are revealed. In some contexts, the autonomous driving mode can mitigate the risk of crash damages compared with conventional driving mode. The findings of this study should be indicative of policy measures and engineering countermeasures that improve the safety and efficiency of AV on the road, ultimately improving road transportation's overall safety and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿绿发布了新的文献求助10
4秒前
5秒前
5秒前
雨柏完成签到 ,获得积分10
5秒前
wanci应助qwe1108采纳,获得10
6秒前
明天过后完成签到,获得积分10
8秒前
jin完成签到,获得积分10
9秒前
yhy完成签到 ,获得积分10
10秒前
黑色卡布奇诺完成签到,获得积分20
10秒前
tanglu发布了新的文献求助10
10秒前
可爱的函函应助梁大海采纳,获得10
10秒前
成就绮琴完成签到 ,获得积分10
11秒前
xicifish完成签到,获得积分10
11秒前
目光之澄完成签到,获得积分10
12秒前
wanci应助研友_ndDPBn采纳,获得10
12秒前
耍酷的白梦完成签到,获得积分10
13秒前
miracle完成签到 ,获得积分10
14秒前
coding完成签到,获得积分10
15秒前
16秒前
犹豫水蓝完成签到,获得积分10
17秒前
yin完成签到,获得积分10
17秒前
JUGG完成签到,获得积分10
17秒前
CipherSage应助阿湫采纳,获得10
18秒前
FIN应助手机采纳,获得20
18秒前
星辰大海应助东黎采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
wujingshuai完成签到,获得积分10
19秒前
少年完成签到,获得积分10
19秒前
星辰大海应助ficus_min采纳,获得10
20秒前
小柒柒完成签到,获得积分10
21秒前
sdfwsdfsd完成签到,获得积分10
22秒前
亮仔完成签到,获得积分10
23秒前
土豆丝发布了新的文献求助10
23秒前
ylw完成签到,获得积分20
24秒前
西门明雪完成签到,获得积分10
24秒前
24秒前
烟花应助万松辉采纳,获得10
25秒前
爆米花应助不站在雾里采纳,获得10
25秒前
yy完成签到,获得积分20
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048